/*****************************************************************************/ // Copyright 2006-2007 Adobe Systems Incorporated // All Rights Reserved. // // NOTICE: Adobe permits you to use, modify, and distribute this file in // accordance with the terms of the Adobe license agreement accompanying it. /*****************************************************************************/ /* $Id: //mondo/dng_sdk_1_4/dng_sdk/source/dng_spline.cpp#1 $ */ /* $DateTime: 2012/05/30 13:28:51 $ */ /* $Change: 832332 $ */ /* $Author: tknoll $ */ /*****************************************************************************/ #include "dng_spline.h" #include "dng_assertions.h" #include "dng_exceptions.h" /******************************************************************************/ dng_spline_solver::dng_spline_solver () : X () , Y () , S () { } /******************************************************************************/ dng_spline_solver::~dng_spline_solver () { } /******************************************************************************/ void dng_spline_solver::Reset () { X.clear (); Y.clear (); S.clear (); } /******************************************************************************/ void dng_spline_solver::Add (real64 x, real64 y) { X.push_back (x); Y.push_back (y); } /******************************************************************************/ void dng_spline_solver::Solve () { // This code computes the unique curve such that: // It is C0, C1, and C2 continuous // The second derivative is zero at the end points int32 count = (int32) X.size (); DNG_ASSERT (count >= 2, "Too few points"); int32 start = 0; int32 end = count; real64 A = X [start+1] - X [start]; real64 B = (Y [start+1] - Y [start]) / A; S.resize (count); S [start] = B; int32 j; // Slopes here are a weighted average of the slopes // to each of the adjcent control points. for (j = start + 2; j < end; ++j) { real64 C = X [j] - X [j-1]; real64 D = (Y [j] - Y [j-1]) / C; S [j-1] = (B * C + D * A) / (A + C); A = C; B = D; } S [end-1] = 2.0 * B - S [end-2]; S [start] = 2.0 * S [start] - S [start+1]; if ((end - start) > 2) { std::vector E; std::vector F; std::vector G; E.resize (count); F.resize (count); G.resize (count); F [start] = 0.5; E [end-1] = 0.5; G [start] = 0.75 * (S [start] + S [start+1]); G [end-1] = 0.75 * (S [end-2] + S [end-1]); for (j = start+1; j < end - 1; ++j) { A = (X [j+1] - X [j-1]) * 2.0; E [j] = (X [j+1] - X [j]) / A; F [j] = (X [j] - X [j-1]) / A; G [j] = 1.5 * S [j]; } for (j = start+1; j < end; ++j) { A = 1.0 - F [j-1] * E [j]; if (j != end-1) F [j] /= A; G [j] = (G [j] - G [j-1] * E [j]) / A; } for (j = end - 2; j >= start; --j) G [j] = G [j] - F [j] * G [j+1]; for (j = start; j < end; ++j) S [j] = G [j]; } } /******************************************************************************/ bool dng_spline_solver::IsIdentity () const { int32 count = (int32) X.size (); if (count != 2) return false; if (X [0] != 0.0 || X [1] != 1.0 || Y [0] != 0.0 || Y [1] != 1.0) return false; return true; } /******************************************************************************/ real64 dng_spline_solver::Evaluate (real64 x) const { int32 count = (int32) X.size (); // Check for off each end of point list. if (x <= X [0]) return Y [0]; if (x >= X [count-1]) return Y [count-1]; // Binary search for the index. int32 lower = 1; int32 upper = count - 1; while (upper > lower) { int32 mid = (lower + upper) >> 1; if (x == X [mid]) { return Y [mid]; } if (x > X [mid]) lower = mid + 1; else upper = mid; } DNG_ASSERT (upper == lower, "Binary search error in point list"); int32 j = lower; // X [j - 1] < x <= X [j] // A is the distance between the X [j] and X [j - 1] // B and C describe the fractional distance to either side. B + C = 1. // We compute a cubic spline between the two points with slopes // S[j-1] and S[j] at either end. Specifically, we compute the 1-D Bezier // with control values: // // Y[j-1], Y[j-1] + S[j-1]*A, Y[j]-S[j]*A, Y[j] return EvaluateSplineSegment (x, X [j - 1], Y [j - 1], S [j - 1], X [j ], Y [j ], S [j ]); } /*****************************************************************************/