1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
|
/*! @file decoder.h
*
* @brief Implementation of core decoder functions and data structure
*
* @version 1.0.0
*
* (C) Copyright 2018 GoPro Inc (http://gopro.com/).
*
* Licensed under either:
* - Apache License, Version 2.0, http://www.apache.org/licenses/LICENSE-2.0
* - MIT license, http://opensource.org/licenses/MIT
* at your option.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "headers.h"
/*!
@brief Align the bitstream to a byte boundary
Enough bits are removed from the bitstream buffer to
align the bitstream to the next byte.
*/
static CODEC_ERROR AlignBitsByte(BITSTREAM *bitstream)
{
// Compute the number of bits to skip
BITCOUNT count = bitstream->count % 8;
GetBits(bitstream, count);
assert((bitstream->count % 8) == 0);
return CODEC_ERROR_OKAY;
}
/*!
@brief Align the bitstream to the next word boundary
All of the bits in the bitstream buffer are flushed unless
the bitstream buffer is completely empty or completely full.
*/
static CODEC_ERROR AlignBitsWord(BITSTREAM *bitstream)
{
BITCOUNT count = bitstream->count;
if (0 < count && count < bit_word_count) {
GetBits(bitstream, count);
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Align the bitstream to the next tag value pair
*/
static CODEC_ERROR AlignBitsSegment(BITSTREAM *bitstream)
{
STREAM *stream = bitstream->stream;
size_t byte_count;
// Byte align the bitstream
AlignBitsByte(bitstream);
assert((bitstream->count % 8) == 0);
// Compute the number of bytes in the bit buffer
byte_count = bitstream->count / 8;
// Add the number of bytes read from the stream
byte_count += stream->byte_count;
while ((byte_count % sizeof(TAGVALUE)) != 0)
{
GetBits(bitstream, 8);
byte_count++;
}
// The bitstream should be aligned to the next segment
assert((bitstream->count == 0) || (bitstream->count == bit_word_count));
assert((byte_count % sizeof(TAGVALUE)) == 0);
return CODEC_ERROR_OKAY;
}
/*!
@brief Initialize the decoder data structure
This routine performs the same function as a C++ constructor.
The decoder is initialized with default values that are replaced
by the parameters used to prepare the decoder (see @ref PrepareDecoder).
This routine does not perform all of the initializations required
to prepare the decoder data structure for decoding a sample.
*/
CODEC_ERROR InitDecoder(DECODER *decoder, const gpr_allocator *allocator)
{
assert(decoder != NULL);
if (! (decoder != NULL)) {
return CODEC_ERROR_NULLPTR;
}
memset(decoder, 0, sizeof(DECODER));
// Assign a memory allocator to the decoder
decoder->allocator = (gpr_allocator *)allocator;
return CODEC_ERROR_OKAY;
}
/*!
@brief Release resources allocated by the decoder
Note that this routine does not close the logfile.
*/
CODEC_ERROR ReleaseDecoder(DECODER *decoder)
{
// Free the wavelet transforms and decoding buffers
ReleaseDecoderTransforms(decoder);
ReleaseDecoderBuffers(decoder);
return CODEC_ERROR_OKAY;
}
/*!
@brief Decode the bitstream encoded into the byte stream into separate component arrays
This is a convenience routine for applications that use the byte stream data structure
for bitstreams stored in a file or memory buffer.
The main entry point for decoding a bitstream is @ref DecodingProcess.
The parameters data structure is intended to simulate information that may be available
to the decoder from the media container or an external application.
This routine assumes that the unpacked image has already been initialized.
*/
CODEC_ERROR DecodeStream(STREAM *stream, UNPACKED_IMAGE *unpacked_image, const DECODER_PARAMETERS *parameters)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
BITSTREAM bitstream;
DECODER decoder;
// Initialize the bitstream data structure
InitBitstream(&bitstream);
// Bind the bitstream to the byte stream
error = AttachBitstream(&bitstream, stream);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Decode the bitstream sample into a image buffer
error = DecodingProcess(&decoder, &bitstream, unpacked_image, parameters);
// Release any resources allocated by the decoder
ReleaseDecoder(&decoder);
// Release any resources allocated by the bitstream
ReleaseBitstream(&bitstream);
return error;
}
/*!
@brief Decode the bitstream encoded into the byte stream
This is a convenience routine for applications that use the byte
stream data structure for samples stored in a file or memory buffer.
The main entry point for decoding a bitstream is @ref DecodingProcess.
The parameters data structure is intended to simulate information that
may be available to the decoder from the media container or an external
application.
*/
CODEC_ERROR DecodeImage(STREAM *stream, IMAGE *packed_image, RGB_IMAGE *rgb_image, DECODER_PARAMETERS *parameters)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
BITSTREAM bitstream;
DECODER decoder;
DIMENSION packed_width;
DIMENSION packed_height;
PIXEL_FORMAT packed_format;
SetupDecoderLogCurve();
// The unpacked image will hold the component arrays decoded from the bitstream
UNPACKED_IMAGE unpacked_image;
// Initialize the bitstream data structure
InitBitstream(&bitstream);
// Bind the bitstream to the byte stream
error = AttachBitstream(&bitstream, stream);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// The component arrays will be allocated after the bitstream is decoded
InitUnpackedImage(&unpacked_image);
// Decode the bitstream sample into a image buffer
error = DecodingProcess(&decoder, &bitstream, &unpacked_image, parameters);
if( error != CODEC_ERROR_OKAY )
{
return error;
}
switch (parameters->rgb_resolution) {
case GPR_RGB_RESOLUTION_NONE:
// The dimensions and format for the output of the image packing process
SetOutputImageFormat(&decoder, parameters, &packed_width, &packed_height, &packed_format);
// Allocate the image buffer for output of the image packing process
AllocImage(decoder.allocator, packed_image, packed_width, packed_height, packed_format);
// Pack the component arrays into the output image
ImageRepackingProcess(&unpacked_image, packed_image, parameters);
break;
case GPR_RGB_RESOLUTION_HALF:
WaveletToRGB(parameters->allocator, (PIXEL*)unpacked_image.component_array_list[0].data, (PIXEL*)unpacked_image.component_array_list[1].data, (PIXEL*)unpacked_image.component_array_list[2].data,
unpacked_image.component_array_list[2].width, unpacked_image.component_array_list[2].height, unpacked_image.component_array_list[2].pitch / 2,
rgb_image, 12, parameters->rgb_bits, ¶meters->rgb_gain );
break;
case GPR_RGB_RESOLUTION_QUARTER:
WaveletToRGB(parameters->allocator, decoder.transform[0].wavelet[0]->data[0], decoder.transform[1].wavelet[0]->data[0], decoder.transform[2].wavelet[0]->data[0],
decoder.transform[2].wavelet[0]->width, decoder.transform[2].wavelet[0]->height, decoder.transform[2].wavelet[0]->width,
rgb_image, 14, parameters->rgb_bits, ¶meters->rgb_gain );
break;
case GPR_RGB_RESOLUTION_EIGHTH:
WaveletToRGB(parameters->allocator, decoder.transform[0].wavelet[1]->data[0], decoder.transform[1].wavelet[1]->data[0], decoder.transform[2].wavelet[1]->data[0],
decoder.transform[2].wavelet[1]->width, decoder.transform[2].wavelet[1]->height, decoder.transform[2].wavelet[1]->width,
rgb_image, 14, parameters->rgb_bits, ¶meters->rgb_gain );
break;
case GPR_RGB_RESOLUTION_SIXTEENTH:
WaveletToRGB(parameters->allocator, decoder.transform[0].wavelet[2]->data[0], decoder.transform[1].wavelet[2]->data[0], decoder.transform[2].wavelet[2]->data[0],
decoder.transform[2].wavelet[2]->width, decoder.transform[2].wavelet[2]->height, decoder.transform[2].wavelet[2]->width,
rgb_image, 14, parameters->rgb_bits, ¶meters->rgb_gain );
break;
default:
return CODEC_ERROR_UNSUPPORTED_FORMAT;
break;
}
ReleaseComponentArrays( ¶meters->allocator, &unpacked_image, unpacked_image.component_count );
// Release any resources allocated by the decoder
ReleaseDecoder(&decoder);
// Release any resources allocated by the bitstream
ReleaseBitstream(&bitstream);
return CODEC_ERROR_OKAY;
}
/*!
@brief Initialize the decoder using the specified parameters
@todo Add more error checking to this top-level routine
*/
CODEC_ERROR PrepareDecoder(DECODER *decoder, const DECODER_PARAMETERS *parameters)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
// Initialize the decoder data structure
error = InitDecoder(decoder, ¶meters->allocator);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Set the mask that specifies which parts of the VC-5 standard are supported
decoder->enabled_parts = parameters->enabled_parts;
// Verify that the enabled parts are correct
error = VerifyEnabledParts(decoder->enabled_parts);
assert(error == CODEC_ERROR_OKAY);
if (! (error == CODEC_ERROR_OKAY)) {
return error;
}
// Initialize the codec state (allocation routines use the codec state)
error = PrepareDecoderState(decoder, parameters);
if (error != CODEC_ERROR_OKAY) {
return error;
}
if (parameters != NULL)
{
#if VC5_ENABLED_PART(VC5_PART_LAYERS)
decoder->layer_count = (uint_fast8_t)parameters->layer_count;
decoder->progressive = parameters->progressive;
decoder->top_field_first = parameters->top_field_first;
#endif
}
#if VC5_ENABLED_PART(VC5_PART_SECTIONS)
if (IsPartEnabled(decoder->enabled_parts, VC5_PART_SECTIONS))
{
decoder->section_flag = parameters->section_flag;
}
#endif
decoder->subbands_to_decode = MAX_SUBBAND_COUNT;
return error;
}
/*!
@brief Decode a VC-5 bitstream to an ordered set of component arrays
This is the main entry point for decoding a sample. The decoder must
have been initialized by a call to @ref PrepareDecoder.
The bitstream must be initialized and bound to a byte stream before
calling this routine. The unpacked output image will be initialized by this
routine to hold the decoded component arrays represented in the bitstream.
@todo When the VC-5 part for layers is defined, should be able to pass a mask
indicating which layers must be decoded
*/
CODEC_ERROR DecodingProcess(DECODER *decoder, BITSTREAM *stream, UNPACKED_IMAGE *image, const DECODER_PARAMETERS *parameters)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
TAGVALUE segment;
// Initialize the decoder with a default allocator
PrepareDecoder(decoder, parameters);
// Get the bitstream start marker
segment = GetSegment(stream);
if (segment.longword != StartMarkerSegment)
{
return CODEC_ERROR_MISSING_START_MARKER;
}
// Set up number of subbands to decode
if( parameters->rgb_resolution == GPR_RGB_RESOLUTION_SIXTEENTH )
{
decoder->subbands_to_decode = 1;
}
else if( parameters->rgb_resolution == GPR_RGB_RESOLUTION_EIGHTH )
{
decoder->subbands_to_decode = 4;
}
else if( parameters->rgb_resolution == GPR_RGB_RESOLUTION_QUARTER )
{
decoder->subbands_to_decode = 7;
}
#if VC5_ENABLED_PART(VC5_PART_LAYERS)
// Decode each layer in the sample
if (decoder->layer_count > 1)
{
IMAGE decoded_image[MAX_LAYER_COUNT];
PIXEL_FORMAT decoded_format = decoder->output.format;
int layer_index;
for (layer_index = 0; layer_index < decoder->layer_count; layer_index++)
{
DIMENSION layer_width = LayerWidth(decoder, decoder->output.width);
DIMENSION layer_height = LayerHeight(decoder, decoder->output.height);
// Allocate a image for this layer
AllocImage(decoder->allocator, &decoded_image[layer_index], layer_width, layer_height, decoded_format);
// Decode the layer into its own image
error = DecodeSampleLayer(decoder, stream, &decoded_image[layer_index]);
if (error != CODEC_ERROR_OKAY) {
break;
}
}
if (error == CODEC_ERROR_OKAY)
{
// The decoded image in each layer is composited into the output image
error = ReconstructSampleFrame(decoder, decoded_image, decoder->layer_count, image);
}
// Free the images used for decoding each layer
for (layer_index = 0; layer_index < decoder->layer_count; layer_index++)
{
ReleaseImage(decoder->allocator, &decoded_image[layer_index]);
}
}
else
#endif
{
// A VC-5 Part 1 bitstream can only contain a single layer (encoded image)
error = DecodeSingleImage(decoder, stream, image, parameters);
}
// Done decoding all layers in the sample and computing the output image
return error;
}
#if VC5_ENABLED_PART(VC5_PART_LAYERS)
/*!
@brief Decode the portion of a sample that corresponds to a single layer
Samples can be contain multiple subsamples. Each subsample may correspond to
a different view. For example, an encoded video sample may contain both the
left and right subsamples in a stereo pair.
Subsamples have been called tracks or channels, but this terminology can be
confused with separate video tracks in a multimedia container or the color
planes that are called channels elsewhere in this codec.
The subsamples are decoded seperately and composited to form a single image
that is the output of the complete process of decoding a single video sample.
For this reason, the subsamples are called layers.
@todo Okay to call a subsample a layer?
*/
CODEC_ERROR DecodeSampleLayer(DECODER *decoder, BITSTREAM *input, UNPACKED_IMAGE *image)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
// Initialize the codec state (including the dimensions of the first wavelet band)
PrepareDecoderState(decoder, NULL);
// Reset the flags in the wavelet transforms
PrepareDecoderTransforms(decoder);
// Process tag value pairs until the layer has been decoded
for (;;)
{
TAGVALUE segment;
// Read the next tag value pair from the bitstream
segment = GetSegment(input);
assert(input->error == BITSTREAM_ERROR_OKAY);
if (input->error != BITSTREAM_ERROR_OKAY) {
decoder->error = CodecErrorBitstream(input->error);
return decoder->error;
break;
}
error = UpdateCodecState(decoder, input, segment);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Processed all wavelet bands in all channels?
if (IsLayerComplete(decoder)) break;
}
// Parsed the bitstream without errors?
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Reconstruct the output image using the last decoded wavelet in each channel
return ReconstructLayerImage(decoder, image);
}
#endif
/*!
@brief Decode the bitstream into a list of component arrays
*/
CODEC_ERROR DecodeSingleImage(DECODER *decoder, BITSTREAM *input, UNPACKED_IMAGE *image, const DECODER_PARAMETERS *parameters)
{
TIMESTAMP("[BEG]", 2)
CODEC_ERROR error = CODEC_ERROR_OKAY;
CODEC_STATE *codec = &decoder->codec;
// Process tag value pairs until the layer has been decoded
for (;;)
{
TAGVALUE segment;
// Read the next tag value pair from the bitstream
segment = GetSegment(input);
assert(input->error == BITSTREAM_ERROR_OKAY);
if (input->error != BITSTREAM_ERROR_OKAY) {
decoder->error = CodecErrorBitstream(input->error);
return decoder->error;
break;
}
error = UpdateCodecState(decoder, input, segment);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Processed all wavelet bands in all channels?
if ( IsDecodingComplete(decoder) && codec->header == false ) {
break;
}
}
// Parsed the bitstream without errors?
if (error != CODEC_ERROR_OKAY) {
return error;
}
TIMESTAMP("[END]", 2)
if( parameters->rgb_resolution == GPR_RGB_RESOLUTION_NONE ||
parameters->rgb_resolution == GPR_RGB_RESOLUTION_HALF ||
parameters->rgb_resolution == GPR_RGB_RESOLUTION_FULL )
{
// Reconstruct the output image using the last decoded wavelet in each channel
error = ReconstructUnpackedImage(decoder, image);
}
return error;
}
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
/*!
@brief Set the channel dimensions from the image dimensions and format
This routine is used set the channel dimensions and other channel-specific
parameters after the bitstream header has been parsed. The dimensions of
each channel can only be set using the parameters present in the bitstream
header if the bitstream conforms to VC-5 Part 3.
*/
CODEC_ERROR SetImageChannelParameters(DECODER *decoder, int channel_number)
{
CODEC_STATE *codec = &decoder->codec;
IMAGE_FORMAT image_format = codec->image_format;
DIMENSION image_width = codec->image_width;
DIMENSION image_height = codec->image_height;
DIMENSION pattern_width = codec->pattern_width;
DIMENSION pattern_height = codec->pattern_height;
// Are the image dimensions valid?
if (image_width == 0 || image_height == 0)
{
// Cannot set the channel dimensions without valid image dimensions
return CODEC_ERROR_IMAGE_DIMENSIONS;
}
// Are the pattern dimensions valid?
if (pattern_width == 0 || pattern_height == 0)
{
// The channel dimensions may depend on the pattern dimensions
return CODEC_ERROR_PATTERN_DIMENSIONS;
}
switch (image_format)
{
case IMAGE_FORMAT_RAW:
// The pattern width and height must be two
assert(pattern_width == 2 && pattern_height == 2);
// The image dimensions must be divisible by the pattern dimensions
//assert((image_width % 2) == 0 && (image_height % 2) == 0);
decoder->channel[channel_number].width = image_width / 2;
decoder->channel[channel_number].height = image_height / 2;
break;
default:
// Cannot set the channel dimensions without a valid image format
return CODEC_ERROR_BAD_IMAGE_FORMAT;
break;
}
//TODO: Is the default bits per component the correct value to use?
decoder->channel[channel_number].bits_per_component = codec->bits_per_component;
decoder->channel[channel_number].initialized = true;
return CODEC_ERROR_OKAY;
}
#endif
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
/*!
@brief Allocate all of the wavelets used during decoding
This routine allocates all of the wavelets in the wavelet tree that
may be used during decoding.
This routine is used to preallocate the wavelets before decoding begins.
If the wavelet bands are allocated on demand if not preallocated.
By default, the wavelet bands are encoded into the bitstream with the bands
from the wavelet at the highest level (smallest wavelet) first so that the
bands can be processed by the decoder in the order as the sample is decoded.
*/
CODEC_ERROR AllocDecoderTransforms(DECODER *decoder)
{
CODEC_ERROR result;
// Use the default allocator for the decoder
gpr_allocator *allocator = decoder->allocator;
int channel_number;
int wavelet_index;
int channel_count;
int wavelet_count;
assert(decoder != NULL);
if (! (decoder != NULL)) {
return CODEC_ERROR_NULLPTR;
}
channel_count = decoder->codec.channel_count;
wavelet_count = decoder->wavelet_count;
for (channel_number = 0; channel_number < channel_count; channel_number++)
{
DIMENSION wavelet_width;
DIMENSION wavelet_height;
// Set the channel dimensions using the information obtained from the bitstream header
result = SetImageChannelParameters(decoder, channel_number);
if( result != CODEC_ERROR_OKAY )
{
assert(0);
return result;
}
// Check that the channel dimensions and other parameters have been set
assert(decoder->channel[channel_number].initialized);
// The dimensions of the wavelet at level zero are equal to the channel dimensions
wavelet_width = decoder->channel[channel_number].width;
wavelet_height = decoder->channel[channel_number].height;
for (wavelet_index = 0; wavelet_index < wavelet_count; wavelet_index++)
{
WAVELET *wavelet;
// Pad the wavelet width if necessary
if ((wavelet_width % 2) != 0) {
wavelet_width++;
}
// Pad the wavelet height if necessary
if ((wavelet_height % 2) != 0) {
wavelet_height++;
}
// Dimensions of the current wavelet must be divisible by two
assert((wavelet_width % 2) == 0 && (wavelet_height % 2) == 0);
// Reduce the dimensions of the next wavelet by half
wavelet_width /= 2;
wavelet_height /= 2;
wavelet = CreateWavelet(allocator, wavelet_width, wavelet_height);
decoder->transform[channel_number].wavelet[wavelet_index] = wavelet;
}
}
return CODEC_ERROR_OKAY;
}
#endif
/*!
@brief Free the wavelet transforms allocated by the decoder
*/
CODEC_ERROR ReleaseDecoderTransforms(DECODER *decoder)
{
int channel_count = decoder->codec.channel_count;
int channel_index;
for (channel_index = 0; channel_index < channel_count; channel_index++)
{
int wavelet_index;
for (wavelet_index = 0; wavelet_index < decoder->wavelet_count; wavelet_index++)
{
WAVELET *wavelet = decoder->transform[channel_index].wavelet[wavelet_index];
DeleteWavelet(decoder->allocator, wavelet);
}
}
return CODEC_ERROR_OKAY;
}
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
/*!
@brief Allocate all of the buffers required for decoding
This routine allocates buffers required for decoding, not including
the wavelet images in the wavelet tree which are allocated by
@ref AllocDecoderTransforms
This routine is used to preallocate buffers before decoding begins.
Decoding buffers are allocated on demand if not preallocated.
Currently, the reference decoder allocates scratch buffers as required
by each routine that needs scratch space and the scratch buffers are
deallocated at the end each routine that allocates scratch space.
@todo Should it be an error if the buffers are not preallocated?
*/
CODEC_ERROR AllocDecoderBuffers(DECODER *decoder)
{
(void)decoder;
return CODEC_ERROR_UNIMPLEMENTED;
}
#endif
/*!
@brief Free any buffers allocated by the decoder
*/
CODEC_ERROR ReleaseDecoderBuffers(DECODER *decoder)
{
(void)decoder;
return CODEC_ERROR_UNIMPLEMENTED;
}
/*!
@brief Allocate the wavelets for the specified channel
*/
CODEC_ERROR AllocateChannelWavelets(DECODER *decoder, int channel_number)
{
// Use the default allocator for the decoder
gpr_allocator *allocator = decoder->allocator;
int wavelet_index;
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
// Use the channel dimensions computed from the image dimension and image format
DIMENSION channel_width = decoder->channel[channel_number].width;
DIMENSION channel_height = decoder->channel[channel_number].height;
#else
// Use the channel dimensions from the current codec state
DIMENSION channel_width = decoder->codec.channel_width;
DIMENSION channel_height = decoder->codec.channel_height;
#endif
// Round up the wavelet dimensions to an even number
DIMENSION wavelet_width = ((channel_width % 2) == 0) ? channel_width / 2 : (channel_width + 1) / 2;
DIMENSION wavelet_height = ((channel_height % 2) == 0) ? channel_height / 2 : (channel_height + 1) / 2;
//TODO: Check for errors before the code that initializes the local variables
assert(decoder != NULL);
if (! (decoder != NULL)) {
return CODEC_ERROR_NULLPTR;
}
for (wavelet_index = 0; wavelet_index < decoder->wavelet_count; wavelet_index++)
{
WAVELET *wavelet = decoder->transform[channel_number].wavelet[wavelet_index];
// Has a wavelet already been created?
if (wavelet != NULL)
{
// Is the wavelet the correct size?
if (wavelet_width != wavelet->width ||
wavelet_height != wavelet->height)
{
// Deallocate the wavelet
DeleteWavelet(allocator, wavelet);
wavelet = NULL;
}
}
if (wavelet == NULL)
{
wavelet = CreateWavelet(allocator, wavelet_width, wavelet_height);
assert(wavelet != NULL);
decoder->transform[channel_number].wavelet[wavelet_index] = wavelet;
}
// Pad the wavelet width if necessary
if ((wavelet_width % 2) != 0) {
wavelet_width++;
}
// Pad the wavelet height if necessary
if ((wavelet_height % 2) != 0) {
wavelet_height++;
}
// Dimensions of the current wavelet must be divisible by two
assert((wavelet_width % 2) == 0 && (wavelet_height % 2) == 0);
// Reduce the dimensions of the next wavelet by half
wavelet_width /= 2;
wavelet_height /= 2;
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Initialize the codec state before starting to decode a bitstream
*/
CODEC_ERROR PrepareDecoderState(DECODER *decoder, const DECODER_PARAMETERS *parameters)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
CODEC_STATE *codec = &decoder->codec;
// Set the parameters that control the decoding process
decoder->wavelet_count = 3;
// The wavelets and decoding buffers have not been allocated
decoder->memory_allocated = false;
// Clear the table of information about each decoded channel
memset(decoder->channel, 0, sizeof(decoder->channel));
// Set the codebook
decoder->codebook = (CODEBOOK *)decoder_codeset_17.codebook;
// Initialize the codec state with the default parameter values
error = PrepareCodecState(codec);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Initialize the codec state with the external parameter values
codec->image_width = parameters->input.width;
codec->image_height = parameters->input.height;
//TODO: Initialize other parameters with external values?
// The default channel dimensions are the image dimensions
codec->channel_width = codec->image_width;
codec->channel_height = codec->image_height;
return error;
}
/*!
@brief Prepare the decoder transforms for the next layer
Each wavelet in the decoder transforms contain flags that indicate
whether the wavelet bands must be decoded. These flags must be reset
before decoding the next layer.
*/
CODEC_ERROR PrepareDecoderTransforms(DECODER *decoder)
{
int channel_count = decoder->codec.channel_count;
int channel_index;
for (channel_index = 0; channel_index < channel_count; channel_index++)
{
int wavelet_count = decoder->wavelet_count;
int wavelet_index;
for (wavelet_index = 0; wavelet_index < wavelet_count; wavelet_index++)
{
WAVELET *wavelet = decoder->transform[channel_index].wavelet[wavelet_index];
wavelet->valid_band_mask = 0;
}
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Pack the component arrays into the output image
The decoding process outputs a set of component arrays that does not correspond
to any common image format. The image repacking process converts the ordered
set of component arrays output by the decoding processing into a packed image.
The image repacking process is not normative in VC-5 Part 1.
*/
CODEC_ERROR ImageRepackingProcess(const UNPACKED_IMAGE *unpacked_image,
PACKED_IMAGE *packed_image,
const DECODER_PARAMETERS *parameters)
{
DIMENSION output_width = packed_image->width;
DIMENSION output_height = packed_image->height;
size_t output_pitch = packed_image->pitch;
PIXEL_FORMAT output_format = packed_image->format;
PIXEL *output_buffer = packed_image->buffer;
ENABLED_PARTS enabled_parts = parameters->enabled_parts;
(void)parameters;
// The dimensions must be in units of Bayer pattern elements
output_width /= 2;
output_height /= 2;
output_pitch *= 2;
switch (output_format)
{
case PIXEL_FORMAT_RAW_RGGB_12:
case PIXEL_FORMAT_RAW_GBRG_12:
return PackComponentsToRAW(unpacked_image, output_buffer, output_pitch,
output_width, output_height, enabled_parts, 12, output_format );
case PIXEL_FORMAT_RAW_RGGB_14:
case PIXEL_FORMAT_RAW_GBRG_14:
return PackComponentsToRAW(unpacked_image, output_buffer, output_pitch,
output_width, output_height, enabled_parts, 14, output_format );
break;
case PIXEL_FORMAT_RAW_RGGB_16:
return PackComponentsToRAW(unpacked_image, output_buffer, output_pitch,
output_width, output_height, enabled_parts, 16, output_format );
break;
default:
assert(0);
break;
}
// Unsupported output image format
return CODEC_ERROR_UNSUPPORTED_FORMAT;
}
/*!
@brief Compute default parameters for the repacked image
*/
CODEC_ERROR SetOutputImageFormat(DECODER *decoder,
const DECODER_PARAMETERS *parameters,
DIMENSION *width_out,
DIMENSION *height_out,
PIXEL_FORMAT *format_out)
{
// The image dimensions are in units of samples
DIMENSION output_width = decoder->codec.image_width;
DIMENSION output_height = decoder->codec.image_height;
PIXEL_FORMAT output_format = PIXEL_FORMAT_UNKNOWN;
// Override the pixel format with the format passed as a parameter
if (parameters->output.format != PIXEL_FORMAT_UNKNOWN) {
output_format = parameters->output.format;
}
assert(output_format != PIXEL_FORMAT_UNKNOWN);
if (width_out != NULL) {
*width_out = output_width;
}
if (height_out != NULL) {
*height_out = output_height;
}
if (format_out != NULL) {
*format_out = output_format;
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Return true if the lowpass bands in all channels are valid
*/
bool ChannelLowpassBandsAllValid(const DECODER *decoder, int index)
{
int channel_count = decoder->codec.channel_count;
int channel;
for (channel = 0; channel < channel_count; channel++)
{
WAVELET *wavelet = decoder->transform[channel].wavelet[index];
if ((wavelet->valid_band_mask & BandValidMask(0)) == 0) {
return false;
}
}
// All channels have valid lowpass bands at the specified level
return true;
}
#if VC5_ENABLED_PART(VC5_PART_SECTIONS)
/*
@brief Return true if the tag identifies a section header
*/
bool IsSectionHeader(TAGWORD tag)
{
switch (tag)
{
case CODEC_TAG_ImageSectionTag:
case CODEC_TAG_HeaderSectionTag:
case CODEC_TAG_LayerSectionTag:
case CODEC_TAG_ChannelSectionTag:
case CODEC_TAG_WaveletSectionTag:
case CODEC_TAG_SubbandSectionTag:
return true;
default:
return false;
}
return false;
}
/*
@brief Map the tag for a section header to the section number
*/
CODEC_ERROR GetSectionNumber(TAGWORD tag, int *section_number_out)
{
int section_number = 0;
switch (tag)
{
case CODEC_TAG_ImageSectionTag:
section_number = 1;
break;
case CODEC_TAG_HeaderSectionTag:
section_number = 2;
break;
case CODEC_TAG_LayerSectionTag:
section_number = 3;
break;
case CODEC_TAG_ChannelSectionTag:
section_number = 4;
break;
case CODEC_TAG_WaveletSectionTag:
section_number = 5;
break;
case CODEC_TAG_SubbandSectionTag:
section_number = 6;
break;
default:
assert(0);
break;
}
if (section_number_out != NULL) {
*section_number_out = section_number;
}
if (section_number > 0) {
return CODEC_ERROR_OKAY;
}
return CODEC_ERROR_BAD_SECTION_TAG;
}
/*!
@brief Write section information to the section log file
*/
CODEC_ERROR WriteSectionInformation(FILE *logfile, int section_number, int section_length)
{
fprintf(logfile, "Section: %d, length: %d\n", section_number, section_length);
return CODEC_ERROR_OKAY;
}
#endif
/*!
@brief Skip the payload in a chunk
A chunk is a tag value pair where the value specifies the length
of a payload. If the tag is a negative number, then the payload
can be skipped without affecting the decoding process.
*/
static CODEC_ERROR SkipPayload(BITSTREAM *bitstream, int chunk_size)
{
// The chunk size is in units of 32-bit words
size_t size = 4 * chunk_size;
// This routine assumes that the bit buffer is empty
assert(bitstream->count == 0);
// Skip the specified number of bytes in the stream
return SkipBytes(bitstream->stream, size);
}
/*!
@brief Parse the unique image identifier in a small chunk payload
@todo Should the UMID instance number be a parameter to this routine?
*/
static CODEC_ERROR ParseUniqueImageIdentifier(DECODER *decoder, BITSTREAM *stream, size_t identifier_length)
{
const int UMID_length_byte = 0x13;
const int UMID_instance_number = 0;
// Total length of the unique image identifier chunk payload (in segments)
const int identifier_chunk_payload_length = UMID_length + sequence_number_length;
uint8_t byte_array[12];
BITWORD length_byte;
BITWORD instance_number;
// Check that the chunk payload has the correct length (in segments)
if (identifier_length != identifier_chunk_payload_length) {
return CODEC_ERROR_SYNTAX_ERROR;
}
// The unique image identifier chunk should begin with a UMID label
GetByteArray(stream, byte_array, sizeof(byte_array));
if (memcmp(byte_array, UMID_label, sizeof(UMID_label)) != 0) {
return CODEC_ERROR_UMID_LABEL;
}
// Check the UMID length byte
length_byte = GetBits(stream, 8);
if (length_byte != UMID_length_byte) {
return CODEC_ERROR_SYNTAX_ERROR;
}
// Check the UMID instance number
instance_number = GetBits(stream, 24);
if (instance_number != UMID_instance_number) {
return CODEC_ERROR_SYNTAX_ERROR;
}
// Read the image sequence identifier
GetByteArray(stream, decoder->image_sequence_identifier, sizeof(decoder->image_sequence_identifier));
// Read the image sequence number
decoder->image_sequence_number = GetBits(stream, 32);
return CODEC_ERROR_OKAY;
}
/*!
@brief Update the codec state with the specified tag value pair
When a segment (tag value pair) is encountered in the bitstream of an
encoded sample, it may imply some change in the codec state. For example,
when a tag for the encoded format is read from the bitstream, the encoded
format entry in the codec state may change.
Some tags require that additional information must be read from the
bitstream and more segments may be encountered, leading to additional
changes in the codec state.
A tag may identify a single parameter and the parameter value must be updated
in the codec state with the new value specified in the segment, but a tag may
also imply that other pparameter values must be updated. For example, the tag
that marks the first encounter with a wavelet at a lower level in the wavelet
tree implies that the width and height of wavelet bands that may be encoded in
the remainder of the sample must be doubled.
It is not necessary for the encoder to insert segments into the bitstream if the
codec state change represented by an encoded tag and value can be deduced from
earlier segments in the bitstream and the codec state can be changed at a time
during decoding that is functionally the same as when the state change would have
been performed by an explicitly encoded tag and value.
@todo Need to check that parameters found in the sample are consistent with
the decoding parameters used to initialize the codec state.
*/
CODEC_ERROR UpdateCodecState(DECODER *decoder, BITSTREAM *stream, TAGVALUE segment)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
CODEC_STATE *codec = &decoder->codec;
ENABLED_PARTS enabled_parts = decoder->enabled_parts;
bool optional = false;
int chunk_size = 0;
TAGWORD tag = segment.tuple.tag;
TAGWORD value = segment.tuple.value;
// The enabled parts variable may not be used depending on the compile-time options
(void)enabled_parts;
// Assume that the next syntax element is not a tag-value pair for a header parameter
codec->header = false;
// Assume that the next syntax element is not a codeblock (large chunk element)
codec->codeblock = false;
// Is this an optional tag?
if (tag < 0) {
tag = RequiredTag(tag);
optional = true;
}
switch (tag)
{
case CODEC_TAG_ChannelCount: // Number of channels in the transform
assert(0 < value && value <= MAX_CHANNEL_COUNT);
codec->channel_count = (uint_least8_t)value;
codec->header = true;
break;
case CODEC_TAG_ImageWidth: // Width of the image
codec->image_width = value;
codec->header = true;
// The image width is the default width of the next channel in the bitstream
codec->channel_width = value;
break;
case CODEC_TAG_ImageHeight: // Height of the image
codec->image_height = value;
codec->header = true;
// The image height is the default height of the next channel in the bitstream
codec->channel_height = value;
break;
case CODEC_TAG_SubbandNumber: // Subband number of this wavelet band
codec->subband_number = value;
break;
case CODEC_TAG_Quantization: // Quantization applied to band
codec->band.quantization = value;
break;
case CODEC_TAG_LowpassPrecision: // Number of bits per lowpass coefficient
if (! (PRECISION_MIN <= value && value <= PRECISION_MAX)) {
return CODEC_ERROR_LOWPASS_PRECISION;
}
codec->lowpass_precision = (PRECISION)value;
break;
case CODEC_TAG_ChannelNumber: // Channel number
codec->channel_number = value;
break;
case CODEC_TAG_BitsPerComponent: // Number of bits in the video source
codec->bits_per_component = (PRECISION)value;
//error = SetDecoderBitsPerComponent(decoder, codec->channel_number, codec->bits_per_component);
break;
case CODEC_TAG_PrescaleShift:
UpdatePrescaleTable(codec, value);
break;
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
case CODEC_TAG_ImageFormat:
if (IsPartEnabled(enabled_parts, VC5_PART_IMAGE_FORMATS))
{
codec->image_format = (IMAGE_FORMAT)value;
codec->header = true;
}
else
{
// The image format shall not be present in the bitstream
assert(0);
error = CODEC_ERROR_BITSTREAM_SYNTAX;
}
break;
case CODEC_TAG_PatternWidth:
if (IsPartEnabled(enabled_parts, VC5_PART_IMAGE_FORMATS))
{
codec->pattern_width = (DIMENSION)value;
codec->header = true;
}
else
{
// The pattern width shall not be present in the bitstream
assert(0);
error = CODEC_ERROR_BITSTREAM_SYNTAX;
}
break;
case CODEC_TAG_PatternHeight:
if (IsPartEnabled(enabled_parts, VC5_PART_IMAGE_FORMATS))
{
codec->pattern_height = (DIMENSION)value;
codec->header = true;
}
else
{
// The pattern height shall not be present in the bitstream
assert(0);
error = CODEC_ERROR_BITSTREAM_SYNTAX;
}
break;
case CODEC_TAG_ComponentsPerSample:
if (IsPartEnabled(enabled_parts, VC5_PART_IMAGE_FORMATS))
{
codec->components_per_sample = (DIMENSION)value;
codec->header = true;
}
else
{
// The components per sample shall not be present in the bitstream
assert(0);
error = CODEC_ERROR_BITSTREAM_SYNTAX;
}
break;
case CODEC_TAG_MaxBitsPerComponent:
if (IsPartEnabled(enabled_parts, VC5_PART_IMAGE_FORMATS))
{
codec->max_bits_per_component = (PRECISION)value;
codec->header = true;
}
else
{
// The components per sample shall not be present in the bitstream
assert(0);
error = CODEC_ERROR_BITSTREAM_SYNTAX;
}
break;
#endif
case CODEC_TAG_ChannelWidth:
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
if (IsPartEnabled(enabled_parts, VC5_PART_IMAGE_FORMATS))
{
// The channel width shall not be present in the bitstream
assert(0);
error = CODEC_ERROR_BITSTREAM_SYNTAX;
}
else
#endif
{
// The channel width may be present in the bitstream
codec->channel_width = (DIMENSION)value;
}
break;
case CODEC_TAG_ChannelHeight:
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
if (IsPartEnabled(enabled_parts, VC5_PART_IMAGE_FORMATS))
{
// The channel height shall not be present in the bitstream
assert(0);
error = CODEC_ERROR_BITSTREAM_SYNTAX;
}
else
#endif
{
// The channel height may be present in the bitstream
codec->channel_height = (DIMENSION)value;
}
break;
default: // Unknown tag or the tag identifies a chunk
//TODO: Check for chunk tags that are not defined in VC-5 Part 1
// Does this tag indicate a chunk of data?
if (tag & CODEC_TAG_CHUNK_MASK)
{
// Does this chunk have a 24-bit size?
if(tag & CODEC_TAG_LARGE_CHUNK)
{
// The chunk size includes the low byte in the tag
chunk_size = (value & 0xFFFF);
chunk_size += ((tag & 0xFF) << 16);
}
else
{
// The chunk size is specified by the value
chunk_size = (value & 0xFFFF);
}
}
// Is this a codeblock?
if ((tag & CODEC_TAG_LargeCodeblock) == CODEC_TAG_LargeCodeblock)
{
codec->codeblock = true;
}
// Is this chunk a unique image identifier?
else if (tag == CODEC_TAG_UniqueImageIdentifier)
{
// The unique image identifier should be optional
assert(optional);
if (! optional) {
return CODEC_ERROR_SYNTAX_ERROR;
}
// Parse the unique image identifier
error = ParseUniqueImageIdentifier(decoder, stream, chunk_size);
}
// Is this chunk an inverse component transform?
else if (tag == CODEC_TAG_InverseTransform)
{
// The inverse component transform should not be optional
assert(!optional);
if (optional) {
return CODEC_ERROR_SYNTAX_ERROR;
}
// Parse the inverse component transform
error = ParseInverseComponentTransform(decoder, stream, chunk_size);
}
// Is this chunk an inverse component permutation?
else if (tag == CODEC_TAG_InversePermutation)
{
// The inverse component permutation should not be optional
assert(!optional);
if (optional) {
return CODEC_ERROR_SYNTAX_ERROR;
}
// Parse the inverse component permutation
error = ParseInverseComponentPermutation(decoder, stream, chunk_size);
}
// Is this chunk a 16-bit inverse component transform?
else if (tag == CODEC_TAG_InverseTransform16)
{
// The 16-bit inverse component transform is not supported
assert(0);
return CODEC_ERROR_UNIMPLEMENTED;
}
#if VC5_ENABLED_PART(VC5_PART_SECTIONS)
// Is this a section header?
else if (IsPartEnabled(enabled_parts, VC5_PART_SECTIONS) && decoder->section_flag && IsSectionHeader(tag))
{
int section_number;
// Section headers are optional tag-value pairs
optional = true;
// Is this a bitstream header section?
if (tag == CODEC_TAG_HeaderSectionTag)
{
// Handle this tag-value pair as if it was a bitstream header parameter
codec->header = true;
}
// Convert the tag to a section number
GetSectionNumber(tag, §ion_number);
// Record the section number and length (in segments)
codec->section_number = section_number;
codec->section_length = chunk_size;
if( decoder->section_logfile )
{
// Write the section information to the log file
WriteSectionInformation(decoder->section_logfile, section_number, chunk_size);
}
}
#endif
else
{
// Does this chunk have a 24-bit chunk payload size?
if (tag & CODEC_TAG_LARGE_CHUNK)
{
optional = true;
chunk_size = 0;
}
assert(optional);
if (!optional)
{
error = CODEC_ERROR_BITSTREAM_SYNTAX;
}
else if (chunk_size > 0)
{
// Skip processing the payload of this optional chunk element
SkipPayload(stream, chunk_size);
}
}
break;
}
// Encountered an error while processing the tag?
if (error != CODEC_ERROR_OKAY)
{
return error;
}
//TODO: Check that bitstreams with missplaced header parameters fail to decode
//if (IsHeaderParameter(tag))
if (codec->header)
{
if (optional)
{
#if VC5_ENABLED_PART(VC5_PART_SECTIONS)
if (tag == CODEC_TAG_HeaderSectionTag)
{
// Okay for the bitstream header to contain an optional section header tag-value pair
}
#if VC5_ENABLED_PART(VC5_PART_LAYERS)
else if (!IsPartEnabled(enabled_parts, VC5_PART_LAYERS))
{
// A header parameter cannot be optional
error = CODEC_ERROR_REQUIRED_PARAMETER;
}
#endif
#endif
#if VC5_ENABLED_PART(VC5_PART_LAYERS)
if (!IsPartEnabled(enabled_parts, VC5_PART_LAYERS))
{
// A header parameter cannot be optional
error = CODEC_ERROR_REQUIRED_PARAMETER;
}
#endif
}
else if (decoder->header_finished)
{
// Should not encounter a header parameter after the header has been parsed
error = CODEC_ERROR_BITSTREAM_SYNTAX;
}
else
{
// Record that this header parameter has been decoded
error = UpdateHeaderParameter(decoder, tag);
}
}
else if (!decoder->header_finished)
{
// There should be no more header parameters in the bitstream
decoder->header_finished = true;
}
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
// The wavelets and buffers can be allocated after the bitstream header has been parsed
if (IsPartEnabled(enabled_parts, VC5_PART_IMAGE_FORMATS) &&
decoder->header_finished &&
!decoder->memory_allocated)
{
// Allocate space for the wavelet transforms
AllocDecoderTransforms(decoder);
// Allocate all buffers required for decoding
AllocDecoderBuffers(decoder);
// Reset the flags in the wavelet transforms
PrepareDecoderTransforms(decoder);
// The wavelet transforms and decoding buffers have been allocated
decoder->memory_allocated = true;
}
#endif
// Found a codeblock element?
if (codec->codeblock)
{
const int channel_number = codec->channel_number;
// Have the channel dimensions been initialized?
if (!decoder->channel[channel_number].initialized)
{
// Record the channel dimensions and component precision
decoder->channel[channel_number].width = codec->channel_width;
decoder->channel[channel_number].height = codec->channel_height;
// Initialize the dimensions of this channel
decoder->channel[channel_number].initialized = true;
//TODO: Allocate space for the wavelet transforms and decoding buffers
}
// Is this the first codeblock encountered in the bitstream for this channel?
if (!decoder->channel[channel_number].found_first_codeblock)
{
// Remember the number of bits per component in this and higher numbered channel
decoder->channel[codec->channel_number].bits_per_component = codec->bits_per_component;
// Found the first codeblock in the channel
decoder->channel[channel_number].found_first_codeblock = true;
}
{
CODEC_STATE *codec = &decoder->codec;
const int subband_number = codec->subband_number;
if( subband_number < decoder->subbands_to_decode )
{
// Decode the subband into its wavelet band
error = DecodeChannelSubband(decoder, stream, chunk_size);
}
else
{
// Skip decoding of subband
error = SkipPayload(stream, chunk_size);
WAVELET* wavelet = decoder->transform[channel_number].wavelet[SubbandWaveletIndex(subband_number)];
wavelet->valid_band_mask = 0xF;
}
// Set the subband number for the next band expected in the bitstream
codec->subband_number++;
// Was the subband successfully decoded?
if (error == CODEC_ERROR_OKAY)
{
// Record that this subband has been decoded successfully
SetDecodedBandMask(codec, subband_number);
}
// Done decoding all subbands in this channel?
if (codec->subband_number == codec->subband_count)
{
// Advance to the next channel
codec->channel_number++;
// Reset the subband number
codec->subband_number = 0;
}
}
}
return error;
}
/*!
@brief Return true if the tag corresponds to a bitstream header parameter
*/
bool IsHeaderParameter(TAGWORD tag)
{
switch (tag)
{
case CODEC_TAG_ImageWidth:
case CODEC_TAG_ImageHeight:
case CODEC_TAG_ChannelCount:
case CODEC_TAG_SubbandCount:
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
case CODEC_TAG_ImageFormat:
case CODEC_TAG_PatternWidth:
case CODEC_TAG_PatternHeight:
case CODEC_TAG_ComponentsPerSample:
case CODEC_TAG_MaxBitsPerComponent:
#endif
return true;
default:
return false;
}
}
/*!
@brief Return the header mask that corresponds to the header tag
*/
uint16_t GetHeaderMask(TAGWORD tag)
{
uint16_t header_mask = 0;
switch (tag)
{
case CODEC_TAG_ImageWidth:
header_mask = BITSTREAM_HEADER_FLAGS_IMAGE_WIDTH;
break;
case CODEC_TAG_ImageHeight:
header_mask = BITSTREAM_HEADER_FLAGS_IMAGE_HEIGHT;
break;
case CODEC_TAG_ChannelCount:
header_mask = BITSTREAM_HEADER_FLAGS_CHANNEL_COUNT;
break;
case CODEC_TAG_SubbandCount:
header_mask = BITSTREAM_HEADER_FLAGS_SUBBAND_COUNT;
break;
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
case CODEC_TAG_ImageFormat:
header_mask = BITSTREAM_HEADER_FLAGS_IMAGE_FORMAT;
break;
#endif
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
case CODEC_TAG_PatternWidth:
header_mask = BITSTREAM_HEADER_FLAGS_PATTERN_WIDTH;
break;
#endif
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
case CODEC_TAG_PatternHeight:
header_mask = BITSTREAM_HEADER_FLAGS_PATTERN_HEIGHT;
break;
#endif
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
case CODEC_TAG_ComponentsPerSample:
header_mask = BITSTREAM_HEADER_FLAGS_COMPONENTS_PER_SAMPLE;
break;
#endif
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
case CODEC_TAG_MaxBitsPerComponent:
header_mask = BITSTREAM_HEADER_FLAGS_MAX_BITS_PER_COMPONENT;
break;
#endif
default:
assert(0);
break;
}
return header_mask;
}
/*!
@brief Record that a header parameter was found in the bitstream.
The tag-value pair that corresponds to a header parameters must occur
in the bitstream header and must occur at most once in the bitstream.
*/
CODEC_ERROR UpdateHeaderParameter(DECODER *decoder, TAGWORD tag)
{
uint16_t header_mask = 0;
if (!IsHeaderParameter(tag)) {
return CODEC_ERROR_UNEXPECTED;
}
header_mask = GetHeaderMask(tag);
if (header_mask == 0) {
return CODEC_ERROR_UNEXPECTED;
}
if (decoder->header_mask & header_mask) {
// The header parameter should occur at most once
return CODEC_ERROR_DUPLICATE_HEADER_PARAMETER;
}
// Record this encounter with the header parameter
decoder->header_mask |= header_mask;
return CODEC_ERROR_OKAY;
}
#if VC5_ENABLED_PART(VC5_PART_COLOR_SAMPLING)
/*!
@brief Adjust the width of the layer (if necessary)
Note that all layers have the same dimensions so the layer index is not
passed as an argument to this routine.
All layers have the same width as the encoded width.
*/
DIMENSION LayerWidth(DECODER *decoder, DIMENSION width)
{
//CODEC_STATE *codec = &decoder->codec;
(void)decoder;
return width;
}
#endif
#if VC5_ENABLED_PART(VC5_PART_COLOR_SAMPLING)
/*!
@brief Adjust the height of the layer to account for interlaced frames
Note that all layers have the same dimensions so the layer index is not
passed as an argument to this routine.
*/
DIMENSION LayerHeight(DECODER *decoder, DIMENSION height)
{
CODEC_STATE *codec = &decoder->codec;
if (codec->progressive == 0)
{
height /= 2;
}
return height;
}
#endif
/*!
@brief Decode the specified wavelet subband
After decoded the specified subband, the routine checks whether all bands
in the current wavelet have been decoded and if so the inverse transform is
applied to the wavelet to reconstruct the lowpass band in the wavelet at the
next lower level.
*/
CODEC_ERROR DecodeChannelSubband(DECODER *decoder, BITSTREAM *input, size_t chunk_size)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
CODEC_STATE *codec = &decoder->codec;
const int channel_number = codec->channel_number;
const int subband_number = codec->subband_number;
// Get the index to the wavelet corresponding to this subband
const int index = SubbandWaveletIndex(subband_number);
// Get the index of the wavelet band corresponding to this subband
const int band = SubbandBandIndex(subband_number);
// Wavelet containing the band to decode
WAVELET *wavelet = NULL;
//TODO: Need to check that the codeblock matches the chunk size
(void)chunk_size;
// Allocate the wavelets for this channel if not already allocated
AllocateChannelWavelets(decoder, channel_number);
// Is this a highpass band?
if (subband_number > 0)
{
// Decode a highpass band
// Get the wavelet that contains the highpass band
wavelet = decoder->transform[channel_number].wavelet[index];
// The wavelets are preallocated
assert(wavelet != NULL);
error = DecodeHighpassBand(decoder, input, wavelet, band);
if (error == CODEC_ERROR_OKAY)
{
// Update the wavelet band valid flags
UpdateWaveletValidBandMask(wavelet, band);
}
// Save the quantization factor
wavelet->quant[band] = codec->band.quantization;
}
else
{
// Decode a lowpass band
// Get the wavelet that contains the lowpass band
wavelet = decoder->transform[channel_number].wavelet[index];
// The lowpass band must be subband zero
assert(subband_number == 0);
// The lowpass data is always stored in wavelet band zero
assert(band == 0);
// The wavelets are preallocated
assert(wavelet != NULL);
error = DecodeLowpassBand(decoder, input, wavelet);
if (error == CODEC_ERROR_OKAY)
{
// Update the wavelet band valid flags
UpdateWaveletValidBandMask(wavelet, band);
}
}
// Ready to invert this wavelet to get the lowpass band in the lower wavelet?
if (BandsAllValid(wavelet))
{
// Apply the inverse wavelet transform to reconstruct the lower level wavelet
error = ReconstructWaveletBand(decoder, channel_number, wavelet, index);
}
return error;
}
/*!
@brief Invert the wavelet to reconstruct a lowpass band
The bands in the wavelet at one level are used to compute the lowpass
band in the wavelet at the next lower level in the transform. Wavelet
levels are numbered starting at zero for the original image. The
reference codec for the baseline profile uses the classic wavelet
tree where each wavelet at a high level depends only on the wavelet
at the next lower level and each wavelet is a spatial wavelet with
four bands.
This routine is called during decoding after all bands in a wavelet
have been decoded and the lowpass band in the wavelet at the next
lower level can be computed by applying the inverse wavelet transform.
This routine is not called for the wavelet at level one to reconstruct the
decoded component arrays. Special routines are used to compute each component
array using the wavelet at level one in each channel.
See @ref ReconstructUnpackedImage.
*/
CODEC_ERROR ReconstructWaveletBand(DECODER *decoder, int channel, WAVELET *wavelet, int index)
{
PRESCALE prescale = decoder->codec.prescale_table[index];
// Is the current wavelet at a higher level than wavelet level one?
if (index > 0)
{
// Reconstruct the lowpass band in the lower wavelet
const int lowpass_index = index - 1;
WAVELET *lowpass;
int lowpass_width;
int lowpass_height;
lowpass = decoder->transform[channel].wavelet[lowpass_index];
assert(lowpass != NULL);
if (! (lowpass != NULL)) {
return CODEC_ERROR_UNEXPECTED;
}
lowpass_width = lowpass->width;
lowpass_height = lowpass->height;
// Check that the reconstructed wavelet is valid
if( lowpass_width <= 0 || lowpass_height <= 0 )
{
assert(false);
return CODEC_ERROR_IMAGE_DIMENSIONS;
}
// Check that the lowpass band has not already been reconstructed
assert((lowpass->valid_band_mask & BandValidMask(0)) == 0);
// Check that all of the wavelet bands have been decoded
assert(BandsAllValid(wavelet));
// Decode the lowpass band in the wavelet one lower level than the input wavelet
TransformInverseSpatialQuantLowpass(decoder->allocator, wavelet, lowpass, prescale);
// Update the band valid flags
UpdateWaveletValidBandMask(lowpass, 0);
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Set the bit for the specified subband in the decoded band mask
The decoded subband mask is used to track which subbands have been
decoded in the current channel. It is reset at the start of each
channel.
*/
CODEC_ERROR SetDecodedBandMask(CODEC_STATE *codec, int subband)
{
if (0 <= subband && subband < MAX_SUBBAND_COUNT) {
codec->decoded_subband_mask |= (1 << subband);
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Decoded the lowpass band from the bitstream
The wavelet at the highest level is passes as an argument.
This routine decodes lowpass band in the bitstream into the
lowpass band of the wavelet.
*/
CODEC_ERROR DecodeLowpassBand(DECODER *decoder, BITSTREAM *stream, WAVELET *wavelet)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
CODEC_STATE *codec = &decoder->codec;
int lowpass_band_width; // Lowpass band dimensions
int lowpass_band_height;
int lowpass_band_pitch;
PIXEL *lowpass_band_ptr; // Pointer into the lowpass band
PRECISION lowpass_precision; // Number of bits per lowpass coefficient
int row, column;
lowpass_band_width = wavelet->width;
lowpass_band_height = wavelet->height;
lowpass_band_pitch = wavelet->pitch/sizeof(PIXEL);
lowpass_band_ptr = wavelet->data[0];
lowpass_precision = codec->lowpass_precision;
// Decode each row in the lowpass image
for (row = 0; row < lowpass_band_height; row++)
{
for (column = 0; column < lowpass_band_width; column++)
{
COEFFICIENT lowpass_value = (COEFFICIENT)GetBits(stream, lowpass_precision);
//assert(0 <= lowpass_value && lowpass_value <= COEFFICIENT_MAX);
//if (lowpass_value > COEFFICIENT_MAX) {
// lowpass_value = COEFFICIENT_MAX;
//}
lowpass_band_ptr[column] = lowpass_value;
}
// Advance to the next row in the lowpass image
lowpass_band_ptr += lowpass_band_pitch;
}
// Align the bitstream to the next tag value pair
AlignBitsSegment(stream);
// Return indication of lowpass decoding success
return error;
}
/*!
@brief Decode the highpass band from the bitstream
The specified wavelet band is decoded from the bitstream
using the codebook and encoding method specified in the
bitstream.
*/
CODEC_ERROR DecodeHighpassBand(DECODER *decoder, BITSTREAM *stream, WAVELET *wavelet, int band)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
// Get the highpass band dimensions
DIMENSION width = wavelet->width; //codec->band.width;
DIMENSION height = wavelet->height; //codec->band.height;
// Check that the band index is in range
assert(0 <= band && band < wavelet->band_count);
// Encoded coefficients start on a tag boundary
AlignBitsSegment(stream);
// Decode this subband
error = DecodeBandRuns(stream, decoder->codebook, wavelet->data[band], width, height, wavelet->pitch);
assert(error == CODEC_ERROR_OKAY);
// Return failure if a problem was encountered while reading the band coefficients
if (error != CODEC_ERROR_OKAY) {
return error;
}
// The encoded band coefficients end on a bitstream word boundary
// to avoid interference with the marker for the coefficient band trailer
AlignBitsWord(stream);
// Decode the band trailer
error = DecodeBandTrailer(stream);
decoder->error = error;
assert(error == CODEC_ERROR_OKAY);
return error;
}
/*!
@brief Decode the highpass band from the bitstream
The highpass band in the bitstream is decoded using the specified
codebook. This routine assumes that the highpass band was encoded
using the run lengths encoding method which is the default for all
current codec implementations.
The encoded highpass band consists of signed values and runs of zeros.
Each codebook entry specifies either an unsigned magnitude with a run
length of one or a run of zeros. The unsigned magnitude is immediately
followed by the sign bit.
Unsigned magnitudes always have a run length of one.
Note that runs of zeros can straddle end of line boundaries.
The end of the highpass band is marked by a special codeword.
Special codewords in the codebook have a run length of zero.
The value indicates the type or purpose of the special codeword.
*/
CODEC_ERROR DecodeBandRuns(BITSTREAM *stream, CODEBOOK *codebook, PIXEL *data,
DIMENSION width, DIMENSION height, DIMENSION pitch)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
size_t data_count;
size_t row_padding;
int row = 0;
int column = 0;
int index = 0;
//BITWORD special;
RUN run = RUN_INITIALIZER;
// Convert the pitch to units of pixels
pitch /= sizeof(PIXEL);
// Check that the band dimensions are reasonable
assert(width <= pitch);
// Compute the number of pixels encoded into the band
data_count = height * width;
row_padding = pitch - width;
while (data_count > 0)
{
// Get the next run length and value
error = GetRun(stream, codebook, &run);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Check that the run does not extend past the end of the band
assert(run.count <= data_count);
// Copy the value into the specified number of pixels in the band
while (run.count > 0)
{
// Reached the end of the column?
if (column == width)
{
// Need to pad the end of the row?
if (row_padding > 0)
{
int count;
for (count = 0; (size_t)count < row_padding; count++) {
data[index++] = 0;
}
}
// Advance to the next row
row++;
column = 0;
}
data[index++] = (PIXEL)run.value;
column++;
run.count--;
data_count--;
}
}
// The last run should have ended at the end of the band
assert(data_count == 0 && run.count == 0);
// Check for the special codeword that marks the end of the highpass band
error = GetRlv(stream, codebook, &run);
if (error == CODEC_ERROR_OKAY) {
if (! (run.count == 0 || run.value == SPECIAL_MARKER_BAND_END)) {
error = CODEC_ERROR_BAND_END_MARKER;
}
}
return error;
}
/*!
@brief Decode the band trailer that follows a highpass band
This routine aligns the bitstream to a tag value boundary.
Currently the band trailer does not perform any function beyond
preparing the bitstream for reading the next tag value pair.
*/
CODEC_ERROR DecodeBandTrailer(BITSTREAM *stream)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
// Advance the bitstream to a tag boundary
AlignBitsSegment(stream);
return error;
}
/*!
@brief Return true if the bitstream has been completely decoded
The end of sample flag is set to true when enough of the sample has been read
from the bitstream to allow the output frame to be fully reconstructed. Any
remaining bits in the sample can be ignored and it may be the case that further
reads from the bitstream will result in an error.
The end of sample flag is set when the tag for the frame trailer is found, but
may be set when sufficient subbands have been decoded to allow the frame to be
reconstructed at the desired resolution. For example, it is not an error if
bands at level one in the wavelet tree are not present in the bitstream when
decoding to half resolution. The decoder should set the end of sample flag as
soon as it is no longer necessary to read further information from the sample.
@todo Rename this routine to end of image or end of bitstream?
*/
bool EndOfSample(DECODER *decoder)
{
return decoder->codec.end_of_sample;
}
#if VC5_ENABLED_PART(VC5_PART_LAYERS)
/*!
@brief Return true of the layer has been completely read from the bitstream
*/
bool EndOfLayer(DECODER *decoder)
{
return (decoder->codec.end_of_layer || decoder->codec.end_of_sample);
}
#endif
/*!
@brief Return true if the entire bitstream header has been decoded
The bitstream header has been completely decoded when at least one
non-header parameter has been encountered in the bitstream and all
of the required header parameters have been decoded.
@todo Create a bitstream that can be used to test this predicate.
*/
bool IsHeaderComplete(DECODER *decoder)
{
return (decoder->header_finished &&
((decoder->header_mask & BITSTREAM_HEADER_FLAGS_REQUIRED) == BITSTREAM_HEADER_FLAGS_REQUIRED));
}
/*!
@brief Return true if all channels in the bitstream have been processed
It is only necessary to test the bands in the largest wavelet in each
channel since its lowpass band would not be finished if the wavelets
at the higher levels were incomplete.
*/
bool IsDecodingComplete(DECODER *decoder)
{
int channel_count = decoder->codec.channel_count;
int channel_index;
for (channel_index = 0; channel_index < channel_count; channel_index++)
{
WAVELET *wavelet = decoder->transform[channel_index].wavelet[0];
// Processing is not complete if the wavelet has not been allocated
if (wavelet == NULL) return false;
// Processing is not complete unless all bands have been processed
if (!AllBandsValid(wavelet)) return false;
}
// All bands in all wavelets in all channels are done
return true;
}
/*!
@brief Perform the final wavelet transform in each channel to compute the component arrays
Each channel is decoded and the lowpass and highpass bands are used to reconstruct the
lowpass band in the wavelet at the next lower level by applying the inverse wavelet filter.
Highpass band decoding and computation of the inverse wavelet transform in each channel
stops when the wavelet at the level immediately above the output frame is computed.
This routine performs the final wavelet transform in each channel and combines the channels
into a single output frame. Note that this routine is called for each layer in a sample,
producing an output frame for each layer. The output frames for each layer must be combine
by an image compositing operation into a single output frame for the fully decoded sample.
*/
CODEC_ERROR ReconstructUnpackedImage(DECODER *decoder, UNPACKED_IMAGE *image)
{
TIMESTAMP("[BEG]", 2)
CODEC_ERROR error = CODEC_ERROR_OKAY;
gpr_allocator *allocator = decoder->allocator;
int channel_count = decoder->codec.channel_count;
int channel_number;
// Check for enough space in the local array allocations
//assert(channel_count <= MAX_CHANNEL_COUNT);
// Allocate the vector of component arrays
size_t size = channel_count * sizeof(COMPONENT_ARRAY);
image->component_array_list = allocator->Alloc(size);
if (image->component_array_list == NULL) {
return CODEC_ERROR_OUTOFMEMORY;
}
// Clear the component array information so that the state is consistent
image->component_count = 0;
memset(image->component_array_list, 0, size);
for (channel_number = 0; channel_number < channel_count; channel_number++)
{
// Get the dimensions of this channel
DIMENSION channel_width = decoder->channel[channel_number].width;
DIMENSION channel_height = decoder->channel[channel_number].height;
PRECISION bits_per_component = decoder->channel[channel_number].bits_per_component;
// Amount of prescaling applied to the component array values before encoding
PRESCALE prescale = decoder->codec.prescale_table[0];
// Allocate the component array for this channel
error = AllocateComponentArray(allocator,
&image->component_array_list[channel_number],
channel_width,
channel_height,
bits_per_component);
if (error != CODEC_ERROR_OKAY) {
return error;
}
error = TransformInverseSpatialQuantArray(allocator,
decoder->transform[channel_number].wavelet[0],
image->component_array_list[channel_number].data,
channel_width,
channel_height,
image->component_array_list[channel_number].pitch,
prescale);
if (error != CODEC_ERROR_OKAY) {
return error;
}
}
// One component array is output by the decoding process per channel in the bitstream
image->component_count = channel_count;
TIMESTAMP("[END]", 2)
return error;
}
#if VC5_ENABLED_PART(VC5_PART_LAYERS)
/*!
@brief Perform the final wavelet transform in each channel to compute the output frame
Each channel is decoded and the lowpass and highpass bands are used to reconstruct the
lowpass band in the wavelet at the next lower level by applying the inverse wavelet filter.
Highpass band decoding and computation of the inverse wavelet transform in each channel
stops when the wavelet at the level immediately above the output frame is computed.
This routine performs the final wavelet transform in each channel and combines the channels
into a single output frame. Note that this routine is called for each layer in a sample,
producing an output frame for each layer. The output frames for each layer must be combine
by an image compositing operation into a single output frame for the fully decoded sample.
Refer to @ref ReconstructSampleFrame for the details of how the frames from each layer
are combined to produce the output frame for the decoded sample.
*/
CODEC_ERROR ReconstructLayerImage(DECODER *decoder, IMAGE *image)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
DIMENSION decoded_width = decoder->decoded.width;
DIMENSION decoded_height = decoder->decoded.height;
int channel_count = decoder->codec.channel_count;
//DIMENSION layer_width = LayerWidth(decoder, decoded_width);
//DIMENSION layer_height = LayerHeight(decoder, decoded_height);
DIMENSION layer_width = decoded_width;
DIMENSION layer_height = decoded_height;
//TODO: Adjust the layer width to account for chroma sampling
// Allocate a buffer for the intermediate output from each wavelet transform
size_t decoded_frame_pitch = layer_width * channel_count * sizeof(PIXEL);
size_t decoded_frame_size = layer_height * decoded_frame_pitch;
PIXEL *decoded_frame_buffer = (PIXEL *)Alloc(decoder->allocator, decoded_frame_size);
if (decoded_frame_buffer == NULL) {
return CODEC_ERROR_OUTOFMEMORY;
}
error = TransformInverseSpatialQuantBuffer(decoder, decoded_frame_buffer, (DIMENSION)decoded_frame_pitch);
if (error == CODEC_ERROR_OKAY)
{
// Pack the decoded frame into the output format
error = PackOutputImage(decoded_frame_buffer, decoded_frame_pitch, decoder->encoded.format, image);
}
// Free the buffer for the decoded frame
Free(decoder->allocator, decoded_frame_buffer);
return error;
}
#endif
#if VC5_ENABLED_PART(VC5_PART_LAYERS)
/*!
@brief Combine multiple decoded frames from each layer into a single output frame
An encoded sample may contain multiple sub-samples called layers. For example,
there may be two sub-samples (layers) for the left and right frames in a stereo pair.
Note that the baseline profile supports only one layer per sample.
Each layer is decoded independently to produce an output frame for that layer. The
CineForm codec does not support dependent sub-samples in any of the existing profiles.
This routine forms a composite frame for the output of the completely decoded sample
from the individual frames obtained by decoding each layer. It is contemplated that
any image compositing algorithm could be used to combine decoded layers, although the
most sophisticated algorithms might be reserved for the most advanced profiles.
The dimensions of the output frame could be much larger than the dimensions of any
of the frames decoded from individual layers. Compositing could overlay the frames
from the individual layers with an arbitrary spatial offset applied to the frame from
each layer, creating a collage from frames decoded from the individual layers. Typical
applications may use only the most elementary compositing operations.
*/
CODEC_ERROR ReconstructSampleFrame(DECODER *decoder, IMAGE image_array[], int frame_count, IMAGE *output_image)
{
DIMENSION frame_width = image_array[0].width;
DIMENSION field_height = image_array[0].height;
DIMENSION frame_height = 2 * field_height;
PIXEL_FORMAT frame_format = image_array[0].format;
AllocImage(decoder->allocator, output_image, frame_width, frame_height, frame_format);
return ComposeFields(image_array, frame_count, output_image);
}
#endif
|