1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
/*! @file wavelet.c
*
* @brief Implementation of the module for wavelet data structures and transforms
*
* @version 1.0.0
*
* (C) Copyright 2018 GoPro Inc (http://gopro.com/).
*
* Licensed under either:
* - Apache License, Version 2.0, http://www.apache.org/licenses/LICENSE-2.0
* - MIT license, http://opensource.org/licenses/MIT
* at your option.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "headers.h"
/*!
@brief Apply the inverse wavelet transform to reconstruct a lowpass band
This routine reconstructs the lowpass band in the output wavelet from the
decoded bands in the input wavelet. The prescale argument is used to undo
scaling that may have been performed during encoding to prevent overflow.
@todo Replace the two different routines for different prescale shifts with
a single routine that can handle any prescale shift.
*/
CODEC_ERROR TransformInverseSpatialQuantLowpass(gpr_allocator *allocator, WAVELET *input, WAVELET *output, uint16_t prescale)
{
// Dimensions of each wavelet band
DIMENSION input_width = input->width;
DIMENSION input_height = input->height;
// The output width may be less than twice the input width if the output width is odd
DIMENSION output_width = output->width;
// The output height may be less than twice the input height if the output height is odd
DIMENSION output_height = output->height;
// Check that a valid input image has been provided
assert(input != NULL);
assert(input->data[0] != NULL);
assert(input->data[1] != NULL);
assert(input->data[2] != NULL);
assert(input->data[3] != NULL);
// Check that the output image is a gray image or a lowpass wavelet band
assert(output->data[0] != NULL);
// Check for valid quantization values
if (input->quant[0] == 0) {
input->quant[0] = 1;
}
assert(input->quant[0] > 0);
assert(input->quant[1] > 0);
assert(input->quant[2] > 0);
assert(input->quant[3] > 0);
if (prescale > 1)
{
// This is a spatial transform for the lowpass temporal band
assert(prescale == 2);
// Apply the inverse spatial transform for a lowpass band that is not prescaled
InvertSpatialQuantDescale16s(allocator,
(PIXEL *)input->data[0], input->pitch,
(PIXEL *)input->data[1], input->pitch,
(PIXEL *)input->data[2], input->pitch,
(PIXEL *)input->data[3], input->pitch,
output->data[0], output->pitch,
input_width, input_height,
output_width, output_height,
prescale, input->quant);
}
else
{
// This case does not handle any prescaling applied during encoding
assert(prescale == 0);
// Apply the inverse spatial transform for a lowpass band that is not prescaled
InvertSpatialQuant16s(allocator,
(PIXEL *)input->data[0], input->pitch,
(PIXEL *)input->data[1], input->pitch,
(PIXEL *)input->data[2], input->pitch,
(PIXEL *)input->data[3], input->pitch,
output->data[0], output->pitch,
input_width, input_height,
output_width, output_height,
input->quant);
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Apply the inverse wavelet transform to reconstruct a component array
This routine reconstructs the lowpass band in the output wavelet from the
decoded bands in the input wavelet. The prescale argument is used to undo
scaling that may have been performed during encoding to prevent overflow.
*/
CODEC_ERROR TransformInverseSpatialQuantArray(gpr_allocator *allocator,
WAVELET *input,
COMPONENT_VALUE *output_buffer,
DIMENSION output_width,
DIMENSION output_height,
size_t output_pitch,
PRESCALE prescale)
{
// Dimensions of each wavelet band
DIMENSION input_width = input->width;
DIMENSION input_height = input->height;
// Check that a valid input image has been provided
assert(input != NULL);
assert(input->data[0] != NULL);
assert(input->data[1] != NULL);
assert(input->data[2] != NULL);
assert(input->data[3] != NULL);
// Check for valid quantization values
if (input->quant[0] == 0) {
input->quant[0] = 1;
}
assert(input->quant[0] > 0);
assert(input->quant[1] > 0);
assert(input->quant[2] > 0);
assert(input->quant[3] > 0);
assert(output_width > 0 && output_height > 0 && output_pitch > 0 && output_buffer != NULL);
if (prescale > 1)
{
// This is a spatial transform for the lowpass temporal band
assert(prescale == 2);
// Apply the inverse spatial transform for a lowpass band that is not prescaled
InvertSpatialQuantDescale16s(allocator,
(PIXEL *)input->data[0], input->pitch,
(PIXEL *)input->data[1], input->pitch,
(PIXEL *)input->data[2], input->pitch,
(PIXEL *)input->data[3], input->pitch,
(PIXEL *)output_buffer, (int)output_pitch,
input_width, input_height,
output_width, output_height,
prescale, input->quant);
}
else
{
// This case does not handle any prescaling applied during encoding
assert(prescale == 0);
// Apply the inverse spatial transform for a lowpass band that is not prescaled
InvertSpatialQuant16s(allocator,
(PIXEL *)input->data[0], input->pitch,
(PIXEL *)input->data[1], input->pitch,
(PIXEL *)input->data[2], input->pitch,
(PIXEL *)input->data[3], input->pitch,
(PIXEL *)output_buffer, (int)output_pitch,
input_width, input_height,
output_width, output_height,
input->quant);
}
return CODEC_ERROR_OKAY;
}
|