1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
|
/*! @file encoder.c
*
* @brief Implementation of functions for encoding samples.
*
* Encoded samples must be aligned on a four byte boundary.
* Any constraints on the alignment of data within the sample
* are handled by padding the sample to the correct alignment.
*
* Note that the encoded dimensions are the actual dimensions of each channel
* (or the first channel in the case of 4:2:2 sampling) in the encoded sample.
* The display offsets and dimensions specify the portion of the encoded frame
* that should be displayed, but in the case of a Bayer image the display
* dimensions are doubled to account for the effects of the demosaic filter.
* If a Bayer image is encoded to Bayer format (no demosaic filter applied),
* then the encoded dimensions will be the same as grid of Bayer quads, less
* any padding required during encoding, but the display dimensions and
* offset will be reported as if a demosiac filter were applied to scale the
* encoded frame to the display dimensions (doubling the width and height).
*
* (C) Copyright 2018 GoPro Inc (http://gopro.com/).
*
* Licensed under either:
* - Apache License, Version 2.0, http://www.apache.org/licenses/LICENSE-2.0
* - MIT license, http://opensource.org/licenses/MIT
* at your option.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "headers.h"
#if ENABLED(NEON)
#include <arm_neon.h>
#endif
/*!
@brief Align the bitstream to a byte boundary
Enough bits are written to the bitstream to align the
bitstream to the next byte.
*/
static CODEC_ERROR AlignBitsByte(BITSTREAM *bitstream)
{
if (bitstream->count > 0 && (bitstream->count % 8) != 0)
{
// Compute the number of bits of padding
BITCOUNT count = (8 - (bitstream->count % 8));
PutBits(bitstream, 0, count);
}
assert((bitstream->count % 8) == 0);
return CODEC_ERROR_OKAY;
}
/*!
@brief Align the bitstream to the next segment
The corresponding function in the existing codec flushes the bitstream.
@todo Is it necessary to flush the bitstream (and the associated byte stream)
after aligning the bitstream to a segment boundary?
*/
static CODEC_ERROR AlignBitsSegment(BITSTREAM *bitstream)
{
STREAM *stream = bitstream->stream;
size_t byte_count;
// Byte align the bitstream
AlignBitsByte(bitstream);
assert((bitstream->count % 8) == 0);
// Compute the number of bytes in the bit buffer
byte_count = bitstream->count / 8;
// Add the number of bytes written to the stream
byte_count += stream->byte_count;
while ((byte_count % sizeof(TAGVALUE)) != 0)
{
PutBits(bitstream, 0, 8);
byte_count++;
}
// The bitstream should be aligned to the next segment
assert((bitstream->count == 0) || (bitstream->count == bit_word_count));
assert((byte_count % sizeof(TAGVALUE)) == 0);
return CODEC_ERROR_OKAY;
}
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
/*!
@brief Set default values for the pattern element structure
Some image formats imply specific parameters for the dimensions of the
pattern elements and the number of components per sample. If the pattern
element structure has not been fully specified by the command-line
arguments, then missing values can be filled in from the default values
for the image format.
*/
bool SetImageFormatDefaults(ENCODER *encoder)
{
switch (encoder->image_format)
{
#if VC5_ENABLED_PART(VC5_PART_COLOR_SAMPLING)
if (IsPartEnabled(encoder->enabled_parts, VC5_PART_COLOR_SAMPLING))
{
// The components per sample parameter is not applicable to VC-5 Part 4 bitstreams
assert(encoder->components_per_sample == 0);
encoder->components_per_sample = 0;
}
else
{
// Set the default components per sample assuming no alpha channel
if (encoder->components_per_sample == 0) {
encoder->components_per_sample = 3;
}
}
#else
// Set the default components per sample assuming no alpha channel
if (encoder->components_per_sample == 0) {
encoder->components_per_sample = 3;
}
#endif
return true;
case IMAGE_FORMAT_RAW:
if (encoder->pattern_width == 0) {
encoder->pattern_width = 2;
}
if (encoder->pattern_height == 0) {
encoder->pattern_height = 2;
}
if (encoder->components_per_sample == 0) {
encoder->components_per_sample = 1;
}
return true;
default:
// Unable to set default values for the pattern elements
return false;
}
}
#endif
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
/*!
@brief Check for inconsistent values for the parameters specified on the command-line
This routine looks for inconsistencies between the image format, the dimensions of the
pattern elements, and the number of components per sample.
*/
bool CheckImageFormatParameters(ENCODER *encoder)
{
switch (encoder->image_format)
{
case IMAGE_FORMAT_RAW:
if (encoder->pattern_width != 2) {
return false;
}
if (encoder->pattern_height != 2) {
return false;
}
if (encoder->components_per_sample != 1) {
return false;
}
// The parameters for the Bayer image format are correct
return true;
default:
// Cannot verify the parameters for an unknown image format
return false;
}
}
#endif
/*!
@brief Prepare the encoder state
*/
CODEC_ERROR PrepareEncoderState(ENCODER *encoder,
const UNPACKED_IMAGE *image,
const ENCODER_PARAMETERS *parameters)
{
CODEC_STATE *codec = &encoder->codec;
int channel_count = image->component_count;
int channel_number;
// Set the default value for the number of bits per lowpass coefficient
PRECISION lowpass_precision = 16;
if (parameters->encoded.lowpass_precision > 0) {
lowpass_precision = parameters->encoded.lowpass_precision;
}
for (channel_number = 0; channel_number < channel_count; channel_number++)
{
DIMENSION width = image->component_array_list[channel_number].width;
DIMENSION height = image->component_array_list[channel_number].height;
PRECISION bits_per_component = image->component_array_list[channel_number].bits_per_component;
// Copy the component array parameters into the encoder state
encoder->channel[channel_number].width = width;
encoder->channel[channel_number].height = height;
encoder->channel[channel_number].bits_per_component = bits_per_component;
// The lowpass bands in all channels are encoded with the same precision
encoder->channel[channel_number].lowpass_precision = lowpass_precision;
}
// Record the number of channels in the encoder state
encoder->channel_count = channel_count;
// The encoder uses three wavelet transform levels for each channel
encoder->wavelet_count = 3;
// Set the channel encoding order
if (parameters->channel_order_count > 0)
{
// Use the channel order specified by the encoding parameters
encoder->channel_order_count = parameters->channel_order_count;
memcpy(encoder->channel_order_table, parameters->channel_order_table, sizeof(encoder->channel_order_table));
}
else
{
// Use the default channel encoding order
for (channel_number = 0; channel_number < channel_count; channel_number++)
{
encoder->channel_order_table[channel_number] = channel_number;
}
encoder->channel_order_count = channel_count;
}
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
// The actual image dimensions are reported in the bitstream header (VC-5 Part 3)
encoder->image_width = parameters->input.width;
encoder->image_height = parameters->input.height;
encoder->pattern_width = parameters->pattern_width;
encoder->pattern_height = parameters->pattern_height;
encoder->components_per_sample = parameters->components_per_sample;
encoder->image_format = parameters->encoded.format;
encoder->max_bits_per_component = MaxBitsPerComponent(image);
// Set default parameters for the image format
SetImageFormatDefaults(encoder);
if (!CheckImageFormatParameters(encoder)) {
return CODEC_ERROR_BAD_IMAGE_FORMAT;
}
#else
// The dimensions of the image is the maximum of the channel dimensions (VC-5 Part 1)
GetMaximumChannelDimensions(image, &encoder->image_width, &encoder->image_height);
#endif
#if VC5_ENABLED_PART(VC5_PART_LAYERS)
// Interlaced images are encoded as separate layers
encoder->progressive = parameters->progressive;
encoder->top_field_first = TRUE;
encoder->frame_inverted = FALSE;
encoder->progressive = 1;
// Set the number of layers (sub-samples) in the encoded sample
encoder->layer_count = parameters->layer_count;
#endif
#if VC5_ENABLED_PART(VC5_PART_SECTIONS)
// by default, all sections are enabled
encoder->enabled_sections = parameters->enabled_sections;
#endif
// Initialize the codec state with the default parameters used by the decoding process
return PrepareCodecState(codec);
}
/*!
@brief Initialize the encoder data structure
This routine performs the same function as a C++ constructor.
The encoder is initialized with default values that are replaced
by the parameters used to prepare the encoder (see @ref PrepareEncoder).
This routine does not perform all of the initializations required
to prepare the encoder data structure for decoding a sample.
*/
CODEC_ERROR InitEncoder(ENCODER *encoder, const gpr_allocator *allocator, const VERSION *version)
{
assert(encoder != NULL);
if (! (encoder != NULL)) {
return CODEC_ERROR_NULLPTR;
}
memset(encoder, 0, sizeof(ENCODER));
// Assign a memory allocator to the encoder
encoder->allocator = (gpr_allocator *)allocator;
// Write debugging information to standard output
encoder->logfile = stdout;
if (version)
{
// Store the version number in the encoder
memcpy(&encoder->version, version, sizeof(encoder->version));
}
else
{
// Clear the version number in the encoder
memset(&encoder->version, 0, sizeof(encoder->version));
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Encode the image into the output stream
This is a convenience routine for applications that use a byte stream to
represent a memory buffer or binary file that will store the encoded image.
The image is unpacked into a set of component arrays by the image unpacking
process invoked by calling the routine @ref ImageUnpackingProcess. The image
unpacking process is informative and is not part of the VC-5 standard.
The main entry point for encoding the component arrays output by the image
unpacking process is @ref EncodingProcess.
*/
CODEC_ERROR EncodeImage(IMAGE *image, STREAM *stream, RGB_IMAGE *rgb_image, ENCODER_PARAMETERS *parameters)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
// Allocate data structures for the encoder state and the bitstream
ENCODER encoder;
BITSTREAM bitstream;
SetupEncoderLogCurve();
UNPACKED_IMAGE unpacked_image;
// Unpack the image into a set of component arrays
error = ImageUnpackingProcess(image, &unpacked_image, parameters, ¶meters->allocator);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Initialize the bitstream data structure
InitBitstream(&bitstream);
// Bind the bitstream to the byte stream
error = AttachBitstream(&bitstream, stream);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Encode the component arrays into the bitstream
error = EncodingProcess(&encoder, &unpacked_image, &bitstream, parameters);
if (error != CODEC_ERROR_OKAY) {
return error;
}
if( rgb_image != NULL && parameters->rgb_resolution == GPR_RGB_RESOLUTION_SIXTEENTH )
{ // Thumbnail
SetupDecoderLogCurve();
WaveletToRGB(parameters->allocator,
encoder.transform[0].wavelet[2]->data[LL_BAND], encoder.transform[1].wavelet[2]->data[LL_BAND], encoder.transform[2].wavelet[2]->data[LL_BAND],
encoder.transform[0].wavelet[2]->width, encoder.transform[0].wavelet[2]->height, encoder.transform[0].wavelet[2]->width,
rgb_image, 14, 8, ¶meters->rgb_gain );
}
error = ReleaseComponentArrays( ¶meters->allocator, &unpacked_image, unpacked_image.component_count );
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Release any resources allocated by the bitstream
ReleaseBitstream(&bitstream);
// Release any resources allocated by the encoder
ReleaseEncoder(&encoder);
return error;
}
/*!
@brief Reference implementation of the VC-5 encoding process.
The encoder takes input image in the form of a list of component arrays
produced by the image unpacking process and encodes the image into the
bitstream.
External parameters are used to initialize the encoder state.
The encoder state determines how the image is encoded int the bitstream.
*/
CODEC_ERROR EncodingProcess(ENCODER *encoder,
const UNPACKED_IMAGE *image,
BITSTREAM *bitstream,
const ENCODER_PARAMETERS *parameters)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
// Initialize the encoder using the parameters provided by the application
error = PrepareEncoder(encoder, image, parameters);
assert(error == CODEC_ERROR_OKAY);
if (! (error == CODEC_ERROR_OKAY)) {
return error;
}
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
if (encoder->image_format == IMAGE_FORMAT_UNKNOWN) {
return CODEC_ERROR_BAD_IMAGE_FORMAT;
}
if ( parameters->verbose_flag )
{
LogPrint("Pattern width: %d\n", encoder->pattern_width);
LogPrint("Pattern height: %d\n", encoder->pattern_height);
if (!IsPartEnabled(encoder->enabled_parts, VC5_PART_COLOR_SAMPLING)) {
LogPrint("Components per sample: %d\n", encoder->components_per_sample);
}
LogPrint("Internal precision: %d\n", encoder->internal_precision);
LogPrint("\n");
}
#endif
// Write the bitstream start marker
PutBitstreamStartMarker(bitstream);
// Allocate six pairs of lowpass and highpass buffers for each channel
AllocateEncoderHorizontalBuffers(encoder);
#if VC5_ENABLED_PART(VC5_PART_LAYERS)
if (!IsPartEnabled(encoder.enabled_parts, VC5_PART_LAYERS) || encoder.layer_count == 1)
{
// Encode the image as a single layer in the sample
error = EncodeSingleImage(encoder, ImageData(image), image->pitch, &bitstream);
}
else
{
// Each layer encodes a separate frame
IMAGE *image_array[MAX_LAYER_COUNT];
memset(image_array, 0, sizeof(image_array));
// The encoding parameters must include a decompositor
assert (parameters->decompositor != NULL);
// Decompose the frame into individual frames for each layer
error = parameters->decompositor(image, image_array, encoder.layer_count);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Encode each frame as a separate layer in the sample
error = EncodeMultipleImages(encoder, image_array, encoder.layer_count, &bitstream);
}
#else
// Encode one image into the bitstream
error = EncodeSingleImage(encoder, image, bitstream);
#endif
DeallocateEncoderHorizontalBuffers(encoder);
return error;
}
/*!
@brief Initialize the encoder using the specified parameters
It is important to use the correct encoded image dimensions (including padding)
and the correct encoded format to initialize the encoder. The decoded image
dimensions must be adjusted to account for a lower decoded resolution if applicable.
It is expected that the parameters data structure may change over time
with additional or different fields, depending on the codec profile or
changes made to the codec during further development. The parameters
data structure may have a version number or may evolve into a dictionary
of key-value pairs with missing keys indicating that a default value
should be used.
@todo Add more error checking to this top-level routine
*/
CODEC_ERROR PrepareEncoder(ENCODER *encoder,
const UNPACKED_IMAGE *image,
const ENCODER_PARAMETERS *parameters)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
VERSION version = VERSION_INITIALIZER(VC5_VERSION_MAJOR, VC5_VERSION_MINOR, VC5_VERSION_REVISION, 0);
PRECISION max_bits_per_component = MaxBitsPerComponent(image);
// Initialize the encoder data structure
InitEncoder(encoder, ¶meters->allocator, &version);
// Set the mask that specifies which parts of the VC-5 standard are supported
encoder->enabled_parts = parameters->enabled_parts;
// Verify that the enabled parts are correct
error = VerifyEnabledParts(encoder->enabled_parts);
assert(error == CODEC_ERROR_OKAY);
if (! (error == CODEC_ERROR_OKAY)) {
return error;
}
// Remember the internal precision used by the image unpacking process
encoder->internal_precision = minimum(max_bits_per_component, default_internal_precision);
// Initialize the encoding parameters and the codec state
PrepareEncoderState(encoder, image, parameters);
// Allocate the wavelet transforms
AllocEncoderTransforms(encoder);
// Initialize the quantizer
SetEncoderQuantization(encoder, parameters);
// Initialize the wavelet transforms
PrepareEncoderTransforms(encoder);
// Allocate the scratch buffers used for encoding
AllocEncoderBuffers(encoder);
// Initialize the encoding tables for magnitudes and runs of zeros
error = PrepareCodebooks(¶meters->allocator, &encoder_codeset_17 );
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Select the codebook for encoding
encoder->codeset = &encoder_codeset_17;
// The encoder is ready to decode a sample
return CODEC_ERROR_OKAY;
}
/*!
@brief Free all resources allocated by the encoder
*/
CODEC_ERROR ReleaseEncoder(ENCODER *encoder)
{
if (encoder != NULL)
{
gpr_allocator *allocator = encoder->allocator;
int channel;
// Free the encoding tables
ReleaseCodebooks(allocator, encoder->codeset);
// Free the wavelet tree for each channel
for (channel = 0; channel < MAX_CHANNEL_COUNT; channel++)
{
ReleaseTransform(allocator, &encoder->transform[channel]);
}
//TODO: Free the encoding buffers
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Encode a single image into the bitstream
This is the main entry point for encoding a single image into the bitstream.
The encoder must have been initialized by a call to @ref PrepareEncoder.
The unpacked image is the set of component arrays output by the image unpacking
process. The bitstream must be initialized and bound to a byte stream before
calling this routine.
*/
CODEC_ERROR EncodeSingleImage(ENCODER *encoder, const UNPACKED_IMAGE *image, BITSTREAM *stream)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
// Write the sample header that is common to all layers
error = EncodeBitstreamHeader(encoder, stream);
assert(error == CODEC_ERROR_OKAY);
if (! (error == CODEC_ERROR_OKAY)) {
return error;
}
// Write the sample extension header to the bitstream
error = EncodeExtensionHeader(encoder, stream);
assert(error == CODEC_ERROR_OKAY);
if (! (error == CODEC_ERROR_OKAY)) {
return error;
}
// Encode each component array as a separate channel in the bitstream
error = EncodeMultipleChannels(encoder, image, stream);
assert(error == CODEC_ERROR_OKAY);
if (! (error == CODEC_ERROR_OKAY)) {
return error;
}
// Finish the encoded sample after the last layer
error = EncodeBitstreamTrailer(encoder, stream);
assert(error == CODEC_ERROR_OKAY);
if (! (error == CODEC_ERROR_OKAY)) {
return error;
}
// Force any data remaining in the bitstream to be written into the sample
FlushBitstream(stream);
return error;
}
#if VC5_ENABLED_PART(VC5_PART_LAYERS)
/*!
@brief Encode multiple frames as separate layers in a sample
The encoder must have been initialized by a call to @ref PrepareEncoder.
The bitstream must be initialized and bound to a byte stream before
calling this routine.
*/
CODEC_ERROR EncodeMultipleFrames(ENCODER *encoder, IMAGE *image_array[], int frame_count, BITSTREAM *stream)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
//CODEC_STATE *codec = &encoder->codec;
int layer_index;
// The number of frames must match the number of layers in the sample
assert(frame_count == encoder->layer_count);
// Initialize the codec state
PrepareEncoderState(encoder);
// Write the bitstream start marker
error = PutBitstreamStartMarker(stream);
assert(error == CODEC_ERROR_OKAY);
if (! (error == CODEC_ERROR_OKAY)) {
return error;
}
// Write the bitstream header that is common to all layers
error = EncodeBitstreamHeader(encoder, stream);
assert(error == CODEC_ERROR_OKAY);
if (! (error == CODEC_ERROR_OKAY)) {
return error;
}
// Write the extension header to the bitstream
error = EncodeExtensionHeader(encoder, stream);
assert(error == CODEC_ERROR_OKAY);
if (! (error == CODEC_ERROR_OKAY)) {
return error;
}
// Encode each frame in a separate layer in the sample
for (layer_index = 0; layer_index < frame_count; layer_index++)
{
error = EncodeLayer(encoder, image_array[layer_index]->buffer, image_array[layer_index]->pitch, stream);
assert(error == CODEC_ERROR_OKAY);
if (! (error == CODEC_ERROR_OKAY)) {
return error;
}
}
error = EncodeSampleExtensionTrailer(encoder, stream);
assert(error == CODEC_ERROR_OKAY);
if (! (error == CODEC_ERROR_OKAY)) {
return error;
}
// Finish the encoded sample after the last layer
error = EncodeSampleTrailer(encoder, stream);
assert(error == CODEC_ERROR_OKAY);
if (! (error == CODEC_ERROR_OKAY)) {
return error;
}
// Force any data remaining in the bitstream to be written into the sample
FlushBitstream(stream);
// Check that the sample offset stack has been emptied
assert(stream->sample_offset_count == 0);
//TODO: Any resources need to be released?
// Done encoding all layers in the sample
return error;
}
#endif
/*!
@brief Initialize the wavelet transforms for encoding
*/
CODEC_ERROR PrepareEncoderTransforms(ENCODER *encoder)
{
//int channel_count = encoder->channel_count;
int channel_number;
// Set the prescale and quantization in each wavelet transform
for (channel_number = 0; channel_number < encoder->channel_count; channel_number++)
{
TRANSFORM *transform = &encoder->transform[channel_number];
// Set the prescaling (may be used in setting the quantization)
int bits_per_component = encoder->channel[channel_number].bits_per_component;
SetTransformPrescale(transform, bits_per_component);
//TODO: Are the wavelet scale factors still used?
// Must set the transform scale if not calling SetTransformQuantization
SetTransformScale(transform);
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Unpack the image into component arrays for encoding
*/
CODEC_ERROR ImageUnpackingProcess(const PACKED_IMAGE *input,
UNPACKED_IMAGE *output,
const ENCODER_PARAMETERS *parameters,
gpr_allocator *allocator)
{
ENABLED_PARTS enabled_parts = parameters->enabled_parts;
int channel_count;
DIMENSION max_channel_width;
DIMENSION max_channel_height;
int bits_per_component;
// The configuration of component arrays is determined by the image format
switch (input->format)
{
case PIXEL_FORMAT_RAW_RGGB_12:
case PIXEL_FORMAT_RAW_RGGB_12P:
case PIXEL_FORMAT_RAW_RGGB_14:
case PIXEL_FORMAT_RAW_GBRG_12:
case PIXEL_FORMAT_RAW_GBRG_12P:
case PIXEL_FORMAT_RAW_RGGB_16:
channel_count = 4;
max_channel_width = input->width / 2;
max_channel_height = input->height / 2;
bits_per_component = 12;
break;
default:
assert(0);
return CODEC_ERROR_PIXEL_FORMAT;
break;
}
// Allocate space for the component arrays
AllocateComponentArrays(allocator, output, channel_count, max_channel_width, max_channel_height,
input->format, bits_per_component);
// The configuration of component arrays is determined by the image format
switch (input->format)
{
case PIXEL_FORMAT_RAW_RGGB_14:
UnpackImage_14(input, output, enabled_parts, true );
break;
case PIXEL_FORMAT_RAW_RGGB_12:
UnpackImage_12(input, output, enabled_parts, true );
break;
case PIXEL_FORMAT_RAW_GBRG_12:
UnpackImage_12(input, output, enabled_parts, false );
break;
case PIXEL_FORMAT_RAW_RGGB_12P:
UnpackImage_12P(input, output, enabled_parts, true );
break;
case PIXEL_FORMAT_RAW_GBRG_12P:
UnpackImage_12P(input, output, enabled_parts, false );
break;
default:
assert(0);
return CODEC_ERROR_PIXEL_FORMAT;
break;
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Insert the header segments that are common to all samples
This code was derived from PutVideoIntraFrameHeader in the current codec.
@todo Need to output the channel size table.
*/
CODEC_ERROR EncodeBitstreamHeader(ENCODER *encoder, BITSTREAM *stream)
{
CODEC_STATE *codec = &encoder->codec;
//TAGWORD subband_count = 10;
TAGWORD image_width = encoder->image_width;
TAGWORD image_height = encoder->image_height;
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
TAGWORD image_format = encoder->image_format;
TAGWORD pattern_width = encoder->pattern_width;
TAGWORD pattern_height = encoder->pattern_height;
TAGWORD components_per_sample = encoder->components_per_sample;
TAGWORD max_bits_per_component = encoder->max_bits_per_component;
TAGWORD default_bits_per_component = max_bits_per_component;
#else
TAGWORD default_bits_per_component = encoder->internal_precision;
#endif
// Align the start of the header on a segment boundary
AlignBitsSegment(stream);
// The bitstream should be aligned to a segment boundary
assert(IsAlignedSegment(stream));
#if VC5_ENABLED_PART(VC5_PART_SECTIONS)
if (IsSectionEnabled(encoder, SECTION_NUMBER_HEADER))
{
// Write the section header for the bitstream header into the bitstream
BeginHeaderSection(encoder, stream);
}
#endif
// Output the number of channels
if (encoder->channel_count != codec->channel_count) {
PutTagPair(stream, CODEC_TAG_ChannelCount, encoder->channel_count);
codec->channel_count = encoder->channel_count;
}
// Inform the decoder of the maximum component array dimensions
PutTagPair(stream, CODEC_TAG_ImageWidth, image_width);
PutTagPair(stream, CODEC_TAG_ImageHeight, image_height);
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
if (IsPartEnabled(encoder->enabled_parts, VC5_PART_IMAGE_FORMATS))
{
PutTagPair(stream, CODEC_TAG_ImageFormat, image_format);
PutTagPair(stream, CODEC_TAG_PatternWidth, pattern_width);
PutTagPair(stream, CODEC_TAG_PatternHeight, pattern_height);
PutTagPair(stream, CODEC_TAG_ComponentsPerSample, components_per_sample);
PutTagPair(stream, CODEC_TAG_MaxBitsPerComponent, max_bits_per_component);
}
#endif
#if VC5_ENABLED_PART(VC5_PART_LAYERS)
if (IsPartEnabled(encoder->enabled_parts, VC5_PART_LAYERS))
{
// Output the number of layers in the sample (optional for backward compatibility)
//PutTagPairOptional(stream, CODEC_TAG_LAYER_COUNT, layer_count);
}
#endif
// Record the image dimensions in the codec state
codec->image_width = image_width;
codec->image_height = image_height;
// The image dimensions determine the default channel dimensions
codec->channel_width = image_width;
codec->channel_height = image_height;
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
if (IsPartEnabled(encoder->enabled_parts, VC5_PART_IMAGE_FORMATS))
{
// Record the pattern element parameters in the codec state
codec->image_format = image_format;
codec->pattern_width = pattern_width;
codec->pattern_height = pattern_height;
codec->components_per_sample = components_per_sample;
codec->max_bits_per_component = (PRECISION)max_bits_per_component;
}
#endif
// This parameter is the default precision for each channel
codec->bits_per_component = default_bits_per_component;
#if VC5_ENABLED_PART(VC5_PART_SECTIONS)
if (IsSectionEnabled(encoder, SECTION_NUMBER_HEADER))
{
// Make sure that the bitstream is aligned to a segment boundary
AlignBitsSegment(stream);
// Update the section header with the actual size of the bitstream header section
EndSection(stream);
}
#endif
return CODEC_ERROR_OKAY;
}
/*!
@brief Write the trailer at the end of the encoded sample
This routine updates the sample size segment in the sample extension header
with the actual size of the encoded sample. The size of the encoded sample
does not include the size of the sample header or trailer.
Note that the trailer may not be necessary as the decoder may stop
reading from the sample after it has decoded all of the information
required to reconstruct the frame.
This code was derived from PutVideoIntraFrameTrailer in the current codec.
*/
CODEC_ERROR EncodeBitstreamTrailer(ENCODER *encoder, BITSTREAM *stream)
{
AlignBitsSegment(stream);
return CODEC_ERROR_OKAY;
}
/*!
@brief Write the unique image identifier
@todo Should the UMID instance number be a parameter to this routine?
*/
static CODEC_ERROR WriteUniqueImageIdentifier(ENCODER *encoder, BITSTREAM *stream)
{
const int UMID_length_byte = 0x13;
const int UMID_instance_number = 0;
// Total length of the unique image identifier chunk payload (in segments)
const int identifier_chunk_payload_length = UMID_length + sequence_number_length;
// Write the tag value pair for the small chunk element for the unique image identifier
PutTagPairOptional(stream, CODEC_TAG_UniqueImageIdentifier, identifier_chunk_payload_length);
// Write the UMID label
PutByteArray(stream, UMID_label, sizeof(UMID_label));
// Write the UMID length byte
PutBits(stream, UMID_length_byte, 8);
// Write the UMID instance number
PutBits(stream, UMID_instance_number, 24);
// Write the image sequence identifier
PutByteArray(stream, encoder->image_sequence_identifier, sizeof(encoder->image_sequence_identifier));
// Write the image sequence number
PutLong(stream, encoder->image_sequence_number);
return CODEC_ERROR_OKAY;
}
/*!
@brief Write extra information that follows the sample header into the bitstream
This routine writes metadata into the sample header extension.
Metadata includes the unique GUID for each video clip, the number of each video frame,
and the timecode (if available). The GUID and frame number pair uniquely identify each
frame in the encoded clip.
This routine also outputs additional information that describes the characterstics of
the encoded video in the GOP extension and sample flags.
The size of the sample extension header is provided by the sample size segment.
*/
CODEC_ERROR EncodeExtensionHeader(ENCODER *encoder, BITSTREAM *stream)
{
ENABLED_PARTS enabled_parts = encoder->enabled_parts;
// Encode the transform prescale for the first channel (assume all channels are the same)
TAGWORD prescale_shift = PackTransformPrescale(&encoder->transform[0]);
// The tag-value pair is required if the encoder is not using the default values
//if (IsTransformPrescaleDefault(&encoder->transform[0], TRANSFORM_TYPE_SPATIAL, encoder->encoded.precision))
if (IsTransformPrescaleDefault(&encoder->transform[0], encoder->internal_precision))
{
PutTagPairOptional(stream, CODEC_TAG_PrescaleShift, prescale_shift);
}
else
{
PutTagPair(stream, CODEC_TAG_PrescaleShift, prescale_shift);
}
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
if (IsPartEnabled(enabled_parts, VC5_PART_IMAGE_FORMATS))
{
WriteUniqueImageIdentifier(encoder, stream);
}
#endif
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
if (IsPartEnabled(enabled_parts, VC5_PART_IMAGE_FORMATS) &&
!IsComponentTransformIdentity(encoder->component_transform))
{
WriteComponentTransform(encoder->component_transform, stream);
}
#endif
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
if (IsPartEnabled(enabled_parts, VC5_PART_IMAGE_FORMATS) &&
!IsComponentPermutationIdentity(encoder->component_permutation))
{
WriteComponentPermutation(encoder->component_permutation, stream);
}
#endif
return CODEC_ERROR_OKAY;
}
/*!
@brief Write the sample extension trailer into the bitstream
This routine must be called after encoding the sample and before writing the
sample trailer, but must only be called if the sample extension header was
written into the bitstream.
*/
CODEC_ERROR EncodeExtensionTrailer(ENCODER *encoder, BITSTREAM *stream)
{
return CODEC_ERROR_OKAY;
}
static int32_t GetMultiplier(QUANT divisor)
{
switch (divisor)
{
case 1:
return (uint32_t)(1 << 16);
case 12:
return (1 << 16) / 12;
case 24:
return (1 << 16) / 24;
case 32:
return (1 << 16) / 32;
case 48:
return (1 << 16) / 48;
case 96:
return (1 << 16) / 96;
case 144:
return (1 << 16) / 144;
default:
return (uint32_t)(1 << 16) / divisor;
};
}
/*!
@brief Compute the rounding value for quantization
*/
static QUANT QuantizerMidpoint(QUANT correction, QUANT divisor)
{
int32_t midpoint = 0;
if (correction == 2)
{
midpoint = divisor >> 1;
// CFEncode_Premphasis_Original
if (midpoint) {
midpoint--;
}
}
else if (correction > 2 && correction < 9)
{
midpoint = divisor / correction;
}
return midpoint;
}
static void GetQuantizationParameters(int32_t midpoint_prequant, QUANT quant[], int32_t* midpoints, int32_t* multipliers)
{
int i;
for (i = 0; i < 4; i++)
{
midpoints[i] = QuantizerMidpoint(midpoint_prequant, quant[i]);
multipliers[i] = GetMultiplier(quant[i]);
}
}
/*!
@brief Shift the buffers of horizontal highpass results
The encoder contains six rows of horizontal lowpass and highpass results
for each channel. This routine shifts the buffers by two rows to make
room for two more rows of horizontal results for each channel.
*/
static void ShiftHorizontalResultBuffers(PIXEL **buffer)
{
PIXEL *buffer01[2];
memcpy( buffer01, buffer + 0, sizeof(PIXEL*) * 2 );
memmove( buffer + 0, buffer + 2, sizeof(PIXEL*) * (ROW_BUFFER_COUNT - 2) );
memcpy( buffer + 4, buffer01, sizeof(PIXEL*) * 2 );
}
typedef struct _recursive_transform_data
{
PIXEL *input_ptr;
DIMENSION input_width;
DIMENSION input_height;
DIMENSION input_pitch;
PIXEL *output_ptr[MAX_BAND_COUNT];
DIMENSION output_width;
DIMENSION output_pitch;
int32_t prescale;
int32_t* midpoints;
int32_t* multipliers;
PIXEL **lowpass_buffer;
PIXEL **highpass_buffer;
} RECURSIVE_TRANSFORM_DATA;
#define RECURSIVE 1
static void ForwardWaveletTransformRecursive(RECURSIVE_TRANSFORM_DATA *transform_data, int wavelet_stage, uint32_t start_row, uint32_t end_row)
{
uint32_t input_row_index = start_row;
PIXEL *input_ptr = transform_data[wavelet_stage].input_ptr;
DIMENSION input_width = transform_data[wavelet_stage].input_width;
DIMENSION input_height = transform_data[wavelet_stage].input_height;
DIMENSION input_pitch = transform_data[wavelet_stage].input_pitch;
PIXEL **output_ptr = transform_data[wavelet_stage].output_ptr;
DIMENSION output_width = transform_data[wavelet_stage].output_width;
DIMENSION output_pitch = transform_data[wavelet_stage].output_pitch;
int32_t* midpoints = transform_data[wavelet_stage].midpoints;
int32_t* multipliers = transform_data[wavelet_stage].multipliers;
PIXEL **lowpass_buffer = transform_data[wavelet_stage].lowpass_buffer;
PIXEL **highpass_buffer = transform_data[wavelet_stage].highpass_buffer;
int32_t prescale = transform_data[wavelet_stage].prescale;
uint32_t bottom_input_row = ((input_height % 2) == 0) ? input_height - 2 : input_height - 1;
uint32_t last_middle_row = bottom_input_row - 2;
end_row = minimum( last_middle_row, end_row);
// --- TOP ROW
if( input_row_index == 0 )
{
int row;
for (row = 0; row < ROW_BUFFER_COUNT; row++)
{
PIXEL *input_row_ptr = (PIXEL *)((uintptr_t)input_ptr + row * input_pitch);
FilterHorizontalRow(input_row_ptr, lowpass_buffer[row], highpass_buffer[row], input_width, prescale);
}
// Process the first row as a special case for the boundary condition
FilterVerticalTopRow(lowpass_buffer, highpass_buffer, output_ptr, output_width, output_pitch, midpoints, multipliers, input_row_index );
input_row_index += 2;
}
// --- MIDDLE ROWS
for (; input_row_index <= end_row; input_row_index += 2)
{
// Check for errors in the row calculation
assert((input_row_index % 2) == 0);
FilterVerticalMiddleRow(lowpass_buffer, highpass_buffer, output_ptr, output_width, output_pitch, midpoints, multipliers, input_row_index );
if (input_row_index < last_middle_row)
{
int row;
ShiftHorizontalResultBuffers(lowpass_buffer);
ShiftHorizontalResultBuffers(highpass_buffer);
// Get two more rows of horizontal lowpass and highpass results
for (row = 4; row < ROW_BUFFER_COUNT; row++)
{
int next_input_row = minimum( input_row_index + row, input_height - 1 );
PIXEL *input_row_ptr = (PIXEL *)((uintptr_t)input_ptr + next_input_row * input_pitch);
FilterHorizontalRow(input_row_ptr, lowpass_buffer[row], highpass_buffer[row], input_width, prescale);
}
}
}
// --- BOTTOM ROW
if( input_row_index == bottom_input_row )
{
FilterVerticalBottomRow(lowpass_buffer, highpass_buffer, output_ptr, output_width, output_pitch, midpoints, multipliers, input_row_index );
}
if( wavelet_stage < (MAX_WAVELET_COUNT - 1) )
{
ForwardWaveletTransformRecursive( transform_data, wavelet_stage + 1, 0, 0xFFFF );
}
}
static void SetRecursiveTransformData(RECURSIVE_TRANSFORM_DATA* transform_data,
const TRANSFORM *transform,
const COMPONENT_ARRAY *input_image_component,
int32_t midpoints[MAX_BAND_COUNT], int32_t multipliers[MAX_BAND_COUNT],
PIXEL *lowpass_buffer[MAX_WAVELET_COUNT][ROW_BUFFER_COUNT],
PIXEL *highpass_buffer[MAX_WAVELET_COUNT][ROW_BUFFER_COUNT],
int midpoint_prequant, int wavelet_stage )
{
int i;
if( wavelet_stage == 0 )
{
transform_data->input_width = input_image_component->width;
transform_data->input_height = input_image_component->height;
transform_data->input_pitch = input_image_component->pitch;
transform_data->input_ptr = (PIXEL*)input_image_component->data;
}
else
{
WAVELET *input_wavelet = transform->wavelet[wavelet_stage - 1];
transform_data->input_width = input_wavelet->width;
transform_data->input_height = input_wavelet->height;
transform_data->input_pitch = input_wavelet->pitch;
transform_data->input_ptr = WaveletRowAddress(input_wavelet, LL_BAND, 0);
}
WAVELET *output_wavelet = transform->wavelet[wavelet_stage];
assert(output_wavelet);
transform_data->output_width = output_wavelet->width;
transform_data->output_pitch = output_wavelet->pitch;
for (i = 0; i < MAX_BAND_COUNT; i++)
{
transform_data->output_ptr[i] = output_wavelet->data[i];
}
transform_data->lowpass_buffer = lowpass_buffer[wavelet_stage];
transform_data->highpass_buffer = highpass_buffer[wavelet_stage];
transform_data->prescale = transform->prescale[wavelet_stage];
GetQuantizationParameters(midpoint_prequant, output_wavelet->quant, midpoints, multipliers );
transform_data->midpoints = midpoints;
transform_data->multipliers = multipliers;
}
static void ForwardWaveletTransform(TRANSFORM *transform, const COMPONENT_ARRAY *input_image_component, PIXEL *lowpass_buffer[MAX_WAVELET_COUNT][ROW_BUFFER_COUNT], PIXEL *highpass_buffer[MAX_WAVELET_COUNT][ROW_BUFFER_COUNT], int midpoint_prequant)
{
RECURSIVE_TRANSFORM_DATA transform_data[MAX_WAVELET_COUNT];
int32_t midpoints[MAX_WAVELET_COUNT][MAX_BAND_COUNT]; //!< Midpoint value for each band (applied during quantization)
int32_t multipliers[MAX_WAVELET_COUNT][MAX_BAND_COUNT]; //!< Multiplier value for each band (applied during quantization)
SetRecursiveTransformData( &transform_data[0], transform, input_image_component, midpoints[0], multipliers[0], lowpass_buffer, highpass_buffer, midpoint_prequant, 0 );
SetRecursiveTransformData( &transform_data[1], transform, input_image_component, midpoints[1], multipliers[1], lowpass_buffer, highpass_buffer, midpoint_prequant, 1 );
SetRecursiveTransformData( &transform_data[2], transform, input_image_component, midpoints[2], multipliers[2], lowpass_buffer, highpass_buffer, midpoint_prequant, 2 );
ForwardWaveletTransformRecursive( transform_data, 0, 0, 0xFFFF );
}
/*!
@brief Encode the portion of a sample that corresponds to a single layer
Samples can be contain multiple subsamples. Each subsample may correspond to
a different view. For example, an encoded video sample may contain both the
left and right subsamples in a stereo pair.
Subsamples have been called tracks or channels, but this terminology can be
confused with separate video tracks in a multimedia container or the color
planes that are called channels elsewhere in this codec.
The subsamples are decoded seperately and composited to form a single frame
that is the output of the complete process of decoding a single video sample.
For this reason, the subsamples are called layers.
@todo Need to reset the codec state for each layer?
*/
//CODEC_ERROR EncodeLayer(ENCODER *encoder, void *buffer, size_t pitch, BITSTREAM *stream)
CODEC_ERROR EncodeMultipleChannels(ENCODER *encoder, const UNPACKED_IMAGE *image, BITSTREAM *stream)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
int channel_count;
int channel_index;
channel_count = encoder->channel_count;
#if VC5_ENABLED_PART(VC5_PART_LAYERS)
if (IsPartEnabled(encoder->enabled_parts, VC5_PART_LAYERS))
{
// Write the tag value pairs that preceed the encoded wavelet tree
error = EncodeLayerHeader(encoder, stream);
if (error != CODEC_ERROR_OKAY) {
return error;
}
}
#endif
CODEC_STATE *codec = &encoder->codec;
// Compute the wavelet transform tree for each channel
for (channel_index = 0; channel_index < channel_count; channel_index++)
{
int channel_number;
ForwardWaveletTransform(&encoder->transform[channel_index], &image->component_array_list[channel_index], encoder->lowpass_buffer, encoder->highpass_buffer, encoder->midpoint_prequant );
channel_number = encoder->channel_order_table[channel_index];
// Encode the tag value pairs in the header for this channel
error = EncodeChannelHeader(encoder, channel_number, stream);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Encode the lowpass and highpass bands in the wavelet tree for this channel
error = EncodeChannelSubbands(encoder, channel_number, stream);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Encode the tag value pairs in the trailer for this channel
error = EncodeChannelTrailer(encoder, channel_number, stream);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Check that the bitstream is alligned to a segment boundary
assert(IsAlignedSegment(stream));
// Update the codec state for the next channel in the bitstream
//codec->channel_number++;
codec->channel_number = (channel_number + 1);
codec->subband_number = 0;
}
#if VC5_ENABLED_PART(VC5_PART_LAYERS)
if (IsPartEnabled(encoder->enabled_parts, VC5_PART_LAYERS))
{
// Write the tag value pairs that follow the encoded wavelet tree
error = EncodeLayerTrailer(encoder, stream);
if (error != CODEC_ERROR_OKAY) {
return error;
}
//TODO: Need to align the bitstream between layers?
}
#endif
return CODEC_ERROR_OKAY;
}
#if VC5_ENABLED_PART(VC5_PART_LAYERS)
/*!
@brief Write the sample layer header
The baseline profile only supports a single layer so the layer header
and trailer are not required.
*/
CODEC_ERROR EncodeLayerHeader(ENCODER *encoder, BITSTREAM *stream)
{
//TODO: Write the tag-value pair for the layer number
return CODEC_ERROR_OKAY;
}
#endif
#if VC5_ENABLED_PART(VC5_PART_LAYERS)
/*!
@brief Write the sample layer trailer
The baseline profile only supports a single layer so the layer header
and trailer are not required.
If more than one layer is present, the layers must be terminated by a
layer trailer. Otherwise, the decoder will continue to parse tag-value
pairs that belong to the next layer.
*/
CODEC_ERROR EncodeLayerTrailer(ENCODER *encoder, BITSTREAM *stream)
{
// The value in the layer trailer tag-value pair is not used
PutTagPairOptional(stream, CODEC_TAG_LAYER_TRAILER, 0);
return CODEC_ERROR_OKAY;
}
#endif
/*!
@brief Encode the channel into the bistream
This routine encodes all of the subbands (lowpass and highpass) in the
wavelet tree for the specified channel into the bitstream.
*/
CODEC_ERROR EncodeChannelWavelets(ENCODER *encoder, BITSTREAM *stream)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
CODEC_STATE *codec = &encoder->codec;
int channel_count;
int channel_index;
// Get the number of channels in the encoder wavelet transform
channel_count = encoder->channel_count;
// Compute the remaining wavelet transforms for each channel
//for (channel_index = 0; channel_index < channel_count; channel_index++)
for (channel_index = 0; channel_index < channel_count; channel_index++)
{
int channel_number = encoder->channel_order_table[channel_index];
// Encode the tag value pairs in the header for this channel
error = EncodeChannelHeader(encoder, channel_number, stream);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Encode the lowpass and highpass bands in the wavelet tree for this channel
error = EncodeChannelSubbands(encoder, channel_number, stream);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Encode the tag value pairs in the trailer for this channel
error = EncodeChannelTrailer(encoder, channel_number, stream);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Check that the bitstream is alligned to a segment boundary
assert(IsAlignedSegment(stream));
// Update the codec state for the next channel in the bitstream
//codec->channel_number++;
codec->channel_number = (channel_number + 1);
codec->subband_number = 0;
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Write the channel header into the bitstream
The channel header separates channels in the encoded layer. The channel header
is not required before the first encoded channel because the codec state is
initialized for decoding the first channel.
The first channel is channel number zero.
*/
CODEC_ERROR EncodeChannelHeader(ENCODER *encoder,
int channel_number,
BITSTREAM *stream)
{
CODEC_STATE *codec = &encoder->codec;
DIMENSION channel_width = encoder->channel[channel_number].width;
DIMENSION channel_height = encoder->channel[channel_number].height;
int bits_per_component = encoder->channel[channel_number].bits_per_component;
AlignBitsSegment(stream);
#if VC5_ENABLED_PART(VC5_PART_SECTIONS)
if (IsSectionEnabled(encoder, SECTION_NUMBER_CHANNEL))
{
// Write the channel section header into the bitstream
BeginChannelSection(encoder, stream);
}
#endif
// Write the channel number if it does not match the codec state
if (channel_number != codec->channel_number)
{
PutTagPair(stream, CODEC_TAG_ChannelNumber, channel_number);
codec->channel_number = channel_number;
}
#if VC5_ENABLED_PART(VC5_PART_IMAGE_FORMATS)
if (IsPartEnabled(encoder->enabled_parts, VC5_PART_IMAGE_FORMATS))
{
// The decoder will derive the channel width and height from the image dimensions and format
codec->channel_width = channel_width;
codec->channel_height = channel_height;
}
else
#endif
{
// Write the component array width if it does not match the codec state
if (channel_width != codec->channel_width)
{
PutTagPair(stream, CODEC_TAG_ChannelWidth, channel_width);
codec->channel_width = channel_width;
}
// Write the component array height if it does not match the codec state
if (channel_height != codec->channel_height)
{
PutTagPair(stream, CODEC_TAG_ChannelHeight, channel_height);
codec->channel_height = channel_height;
}
}
// Write the component array precision if it does not match the codec state
if (bits_per_component != codec->bits_per_component)
{
PutTagPair(stream, CODEC_TAG_BitsPerComponent, bits_per_component);
codec->bits_per_component = bits_per_component;
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Write the encoded subbands for this channel into the bitstream
This routine writes the encoded subbands in the wavelet tree for this channel
into the bitstream, including both the lowpass band and all of the highpass
bands in each wavelet in this channel.
*/
CODEC_ERROR EncodeChannelSubbands(ENCODER *encoder, int channel_number, BITSTREAM *stream)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
//CODEC_STATE *codec = &encoder->codec;
int wavelet_count = encoder->wavelet_count;
int last_wavelet_index = wavelet_count - 1;
int wavelet_index;
int subband = 0;
// Start with the lowpass band in the wavelet at the highest level
WAVELET *wavelet = encoder->transform[channel_number].wavelet[last_wavelet_index];
// Check that the bitstream is aligned on a segment boundary
assert(IsAlignedSegment(stream));
#if VC5_ENABLED_PART(VC5_PART_SECTIONS)
if (IsSectionEnabled(encoder, SECTION_NUMBER_WAVELET))
{
// Write the wavelet section header into the bitstream
BeginWaveletSection(encoder, stream);
}
#endif
// Encode the lowpass subband in this channel
error = EncodeLowpassBand(encoder, wavelet, channel_number, stream);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Advance to the first highpass subband
subband++;
// Encode the highpass bands in order of subband number
for (wavelet_index = last_wavelet_index; wavelet_index >= 0; wavelet_index--)
{
//int wavelet_type = WAVELET_TYPE_SPATIAL;
//int wavelet_level = wavelet_index + 1;
int band_index;
//int lowpass_scale = 0;
//int lowpass_divisor = 0;
wavelet = encoder->transform[channel_number].wavelet[wavelet_index];
#if VC5_ENABLED_PART(VC5_PART_SECTIONS)
if (IsSectionEnabled(encoder, SECTION_NUMBER_WAVELET))
{
// Was the wavelet section header already written into the bitstream?
if (wavelet_index < last_wavelet_index)
{
// Write the wavelet section header into the bitstream
BeginWaveletSection(encoder, stream);
}
}
#endif
// Encode the highpass bands in this wavelet
for (band_index = 1; band_index < wavelet->band_count; band_index++)
{
error = EncodeHighpassBand(encoder, wavelet, band_index, subband, stream);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Advance to the next subband
subband++;
}
#if VC5_ENABLED_PART(VC5_PART_SECTIONS)
if (IsSectionEnabled(encoder, SECTION_NUMBER_WAVELET))
{
// Make sure that the bitstream is aligned to a segment boundary
AlignBitsSegment(stream);
// Update the section header with the actual size of the wavelet section
EndSection(stream);
}
#endif
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Write the channel trailer into the bitstream
A channel trailer is not required as the channel header functions as a marker
between channels in the bitstream.
It may be necessary to update the channel size in a sample size segment written
into the channel header if the channel header includes a sample size segment in
the future.
*/
CODEC_ERROR EncodeChannelTrailer(ENCODER *encoder, int channel, BITSTREAM *stream)
{
#if VC5_ENABLED_PART(VC5_PART_SECTIONS)
if (IsSectionEnabled(encoder, SECTION_NUMBER_CHANNEL))
{
// Make sure that the bitstream is aligned to a segment boundary
AlignBitsSegment(stream);
// Update the section header with the actual size of the channel section
EndSection(stream);
}
#endif
return CODEC_ERROR_OKAY;
}
/*!
@brief Allocate intermediate buffers for the horizontal transform results
@todo Need to return an error code if allocation fails
*/
CODEC_ERROR AllocateEncoderHorizontalBuffers(ENCODER *encoder)
{
gpr_allocator *allocator = encoder->allocator;
int channel_index;
int wavelet_index;
int channel_count = encoder->channel_count;
int buffer_width = 0;
for (channel_index = 0; channel_index < channel_count; channel_index++)
{
buffer_width = maximum(buffer_width, encoder->channel[channel_index].width );
}
buffer_width = ((buffer_width % 2) == 0) ? buffer_width / 2 : (buffer_width + 1) / 2;
for (wavelet_index = 0; wavelet_index < MAX_WAVELET_COUNT; wavelet_index++)
{
int row;
int channel_width = encoder->transform[0].wavelet[wavelet_index]->width;
for (row = 0; row < ROW_BUFFER_COUNT; row++)
{
PIXEL *lowpass_buffer = allocator->Alloc(channel_width * sizeof(PIXEL) * 2);
PIXEL *highpass_buffer = lowpass_buffer + channel_width;
assert(lowpass_buffer != NULL);
if (! (lowpass_buffer != NULL)) {
return CODEC_ERROR_OUTOFMEMORY;
}
encoder->lowpass_buffer[wavelet_index][row] = lowpass_buffer;
encoder->highpass_buffer[wavelet_index][row] = highpass_buffer;
}
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Deallocate the intermediate buffers for the horizontal transform results
It is possible to avoid reallocating the buffers for the horizontal transform
results if the buffers were not deallocated between encoded frames. In this case,
it would be necessary to call this routine inside @ref ReleaseEncoder and it would
also be necessary to modify @ref AllocateEncoderHorizontalBuffers to not allocate
the buffers if they are already allocated.
*/
CODEC_ERROR DeallocateEncoderHorizontalBuffers(ENCODER *encoder)
{
gpr_allocator *allocator = encoder->allocator;
int wavelet_index;
for (wavelet_index = 0; wavelet_index < MAX_WAVELET_COUNT; wavelet_index++)
{
int row;
for (row = 0; row < ROW_BUFFER_COUNT; row++)
{
allocator->Free(encoder->lowpass_buffer[wavelet_index][row]);
}
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Allocate buffers used for computing the forward wavelet transform
*/
CODEC_ERROR AllocateHorizontalBuffers(gpr_allocator *allocator,
PIXEL *lowpass_buffer[],
PIXEL *highpass_buffer[],
int buffer_width)
{
const size_t row_buffer_size = buffer_width * sizeof(PIXEL);
int row;
for (row = 0; row < ROW_BUFFER_COUNT; row++)
{
lowpass_buffer[row] = allocator->Alloc(row_buffer_size);
highpass_buffer[row] = allocator->Alloc(row_buffer_size);
// Check that the memory allocation was successful
assert(lowpass_buffer[row] != NULL);
if (! (lowpass_buffer[row] != NULL)) {
return CODEC_ERROR_OUTOFMEMORY;
}
assert(highpass_buffer[row] != NULL);
if (! (highpass_buffer[row] != NULL)) {
return CODEC_ERROR_OUTOFMEMORY;
}
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Deallocate buffers used for computing the forward wavelet transform
*/
CODEC_ERROR DeallocateHorizontalBuffers(gpr_allocator *allocator,
PIXEL *lowpass_buffer[],
PIXEL *highpass_buffer[])
{
int row;
for (row = 0; row < ROW_BUFFER_COUNT; row++)
{
allocator->Free(lowpass_buffer[row]);
allocator->Free(highpass_buffer[row]);
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Allocate all of the wavelets used during encoding
This routine allocates all of the wavelets in the wavelet tree that
may be used during encoding.
This routine is used to preallocate the wavelets before encoding begins.
If the wavelet bands are allocated on demand if not preallocated.
By default, the wavelet bands are encoded into the bitstream with the bands
from the wavelet at the highest level (smallest wavelet) first so that the
bands can be processed by the encoder in the order as the sample is decoded.
@todo Do not allocate wavelets for resolutions that are larger then the
decoded resolution. At lower resolutions, the depth of the wavelet tree
can be reduced and the highpass bands in the unused wavelets to not have
to be decoded.
@todo Should it be an error if the wavelets are not preallocated?
*/
CODEC_ERROR AllocEncoderTransforms(ENCODER *encoder)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
// Use the default allocator for the encoder
gpr_allocator *allocator = encoder->allocator;
int channel_index;
int wavelet_index;
assert(encoder != NULL);
if (! (encoder != NULL)) {
return CODEC_ERROR_NULLPTR;
}
// Check that the encoded dimensions are valid
//assert((encoder->encoded.width % (1 << encoder->wavelet_count)) == 0);
for (channel_index = 0; channel_index < encoder->channel_count; channel_index++)
{
// The wavelet at level zero has the same dimensions as the encoded frame
DIMENSION wavelet_width = 0;
DIMENSION wavelet_height = 0;
error = GetChannelDimensions(encoder, channel_index, &wavelet_width, &wavelet_height);
assert(wavelet_width > 0 && wavelet_height > 0);
if (error != CODEC_ERROR_OKAY) {
return error;
}
for (wavelet_index = 0; wavelet_index < encoder->wavelet_count; wavelet_index++)
{
WAVELET *wavelet = NULL;
// Pad the wavelet width if not divisible by two
if ((wavelet_width % 2) != 0) {
wavelet_width++;
}
// Pad the wavelet height if not divisible by two
if ((wavelet_height % 2) != 0) {
wavelet_height++;
}
// Reduce the dimensions of the next wavelet by half
wavelet_width /= 2;
wavelet_height /= 2;
// Dimensions of the current wavelet must be divisible by two
//assert((wavelet_width % 2) == 0 && (wavelet_height % 2) == 0);
// The wavelet width must be divisible by two
//assert((wavelet_width % 2) == 0);
// Allocate the wavelet
wavelet = CreateWavelet(allocator, wavelet_width, wavelet_height);
if (wavelet == NULL) {
return CODEC_ERROR_OUTOFMEMORY;
}
// Add the wavelet to the transform
encoder->transform[channel_index].wavelet[wavelet_index] = wavelet;
}
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Allocate all of the buffers required for encoding
This routine allocates buffers required for encoding, not including
the wavelet images in the wavelet tree which are allocated by
@ref AllocEncoderTransforms
This routine is used to preallocate buffers before encoding begins.
If the buffers are allocated on demand if not preallocated.
The encoding parameters, including the encoded frame dimensions,
resolution of the decoded frame, and the decoded pixel format, are
taken into account when the buffers are allocated. For example,
buffer space that is only used when encoding to full resolution will
not be allocated if the frame is decoded to a smaller size.
Note that it is not an error to preallocate more buffer space than
what is strictly required for encoding. For example, it is okay to
allocate buffer space required for full frame encoding even if the
encoded sample will be decoded at lower resolution. In many applications,
it is simpler to preallocate the maximum buffer space that may be needed.
Currently, the reference encoder allocates scratch buffers as required
by each routine that needs scratch space and the scratch buffers are
deallocated at the end each routine that allocates scratch space.
A custom memory allocator can make this scheme efficient. See comments
in the documentation for the memory allocator module.
@todo Should it be an error if the buffers are not preallocated?
*/
CODEC_ERROR AllocEncoderBuffers(ENCODER *encoder)
{
(void)encoder;
return CODEC_ERROR_UNIMPLEMENTED;
}
/*!
@brief Set the quantization parameters in the encoder
This routine computes the parameters in the quantizer used by
the encoder based based on the quality setting and the desired
bitrate. The quantization parameters are adjsuted to compensate
for the precision of the input pixels.
Note that the baseline profile does not support quantization to
achieve a desired bitrate.
*/
CODEC_ERROR SetEncoderQuantization(ENCODER *encoder,
const ENCODER_PARAMETERS *parameters)
{
int channel_count = encoder->channel_count;
int channel_number;
const int quant_table_length = sizeof(parameters->quant_table)/sizeof(parameters->quant_table[0]);
// Set the midpoint prequant parameter
encoder->midpoint_prequant = 2;
// Set the quantization table in each channel
for (channel_number = 0; channel_number < channel_count; channel_number++)
{
SetTransformQuantTable(encoder, channel_number, parameters->quant_table, quant_table_length);
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Copy the quantization table into the wavelet bands
*/
CODEC_ERROR SetTransformQuantTable(ENCODER *encoder, int channel, const QUANT table[], int table_length)
{
int wavelet_count = encoder->wavelet_count;
int wavelet_index;
int subband;
// All lowpass bands use the quantization for subband zero
for (wavelet_index = 0; wavelet_index < wavelet_count; wavelet_index++)
{
WAVELET *wavelet = encoder->transform[channel].wavelet[wavelet_index];
wavelet->quant[0] = table[0];
}
// Store the quantization values for the highpass bands in each wavelet
for (subband = 1; subband < table_length; subband++)
{
int wavelet_index = SubbandWaveletIndex(subband);
int band_index = SubbandBandIndex(subband);
WAVELET *wavelet;
assert(0 <= wavelet_index && wavelet_index < wavelet_count);
assert(0 <= band_index && band_index <= MAX_BAND_COUNT);
// Store the quantization value for this subband
wavelet = encoder->transform[channel].wavelet[wavelet_index];
wavelet->quant[band_index] = table[subband];
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Return the encoded dimensions for the specified channel
The encoded dimensions for each channel may differ due to color
difference component sampling.
*/
CODEC_ERROR GetChannelDimensions(ENCODER *encoder,
int channel_number,
DIMENSION *channel_width_out,
DIMENSION *channel_height_out)
{
DIMENSION channel_width = 0;
DIMENSION channel_height = 0;
assert(encoder != NULL && channel_width_out != NULL && channel_height_out != NULL);
if (! (encoder != NULL && channel_width_out != NULL && channel_height_out != NULL)) {
return CODEC_ERROR_NULLPTR;
}
assert(0 <= channel_number && channel_number < encoder->channel_count);
if (! (0 <= channel_number && channel_number < encoder->channel_count)) {
return CODEC_ERROR_UNEXPECTED;
}
// Clear the output dimensions in case this routine terminates early
*channel_width_out = 0;
*channel_height_out = 0;
channel_width = encoder->channel[channel_number].width;
channel_height = encoder->channel[channel_number].height;
*channel_width_out = channel_width;
*channel_height_out = channel_height;
return CODEC_ERROR_OKAY;
}
/*!
@brief Adjust the height of encoded layer
Interleaved frames are encoded as separate layers with half the height.
*/
DIMENSION EncodedLayerHeight(ENCODER *encoder, DIMENSION height)
{
#if VC5_ENABLED_PART(VC5_PART_LAYERS)
assert(encoder != NULL);
if (encoder->progressive == 0) {
height /= 2;
}
#endif
return height;
}
/*!
@brief Compute the dimensions of the image as reported by the ImageWidth and ImageHeight parameters
The image width is the maximum width of all component arrays and the image height is the maximum height
of all component arrays.
*/
CODEC_ERROR GetMaximumChannelDimensions(const UNPACKED_IMAGE *image, DIMENSION *width_out, DIMENSION *height_out)
{
DIMENSION width = 0;
DIMENSION height = 0;
int channel_number;
if (image == NULL) {
return CODEC_ERROR_UNEXPECTED;
}
for (channel_number = 0; channel_number < image->component_count; channel_number++)
{
if (width < image->component_array_list[channel_number].width) {
width = image->component_array_list[channel_number].width;
}
if (height < image->component_array_list[channel_number].height) {
height = image->component_array_list[channel_number].height;
}
}
if (width_out != NULL) {
*width_out = width;
}
if (height_out != NULL) {
*height_out = height;
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Set the bit for the specified subband in the decoded band mask
The decoded subband mask is used to track which subbands have been
decoded in teh current channel. It is reset at the start of each
channel.
The decoded subband mask is used when decoding a sample at less
than full resolution. The mask indicates when enough subbands
have been decoded for a channel and that remaining portion of the
encoded sample for the current channel may be skipped.
*/
CODEC_ERROR SetEncodedBandMask(CODEC_STATE *codec, int subband)
{
if (0 <= subband && subband < MAX_SUBBAND_COUNT) {
codec->decoded_subband_mask |= (1 << subband);
}
return CODEC_ERROR_OKAY;
}
/*!
@brief Encoded the lowpass band from the bitstream
The wavelet at the highest level is passes as an argument.
This routine decodes lowpass band in the bitstream into the
lowpass band of the wavelet.
*/
CODEC_ERROR EncodeLowpassBand(ENCODER *encoder, WAVELET *wavelet, int channel_number, BITSTREAM *stream)
{
CODEC_STATE *codec = &encoder->codec;
//FILE *logfile = encoder->logfile;
//int subband = 0;
//int level = encoder->wavelet_count;
int width = wavelet->width;
int height = wavelet->height;
uint8_t *lowpass_row_ptr;
int lowpass_pitch;
int row;
PRECISION lowpass_precision = encoder->channel[channel_number].lowpass_precision;
lowpass_row_ptr = (uint8_t *)wavelet->data[LL_BAND];
lowpass_pitch = wavelet->pitch;
#if VC5_ENABLED_PART(VC5_PART_SECTIONS)
if (IsSectionEnabled(encoder, SECTION_NUMBER_SUBBAND))
{
// Make sure that the bitstream is aligned to a segment boundary
AlignBitsSegment(stream);
// Write the channel section header into the bitstream
BeginSubbandSection(encoder, stream);
}
#endif
// Write the tag-value pairs for the lowpass band to the bitstream
PutVideoLowpassHeader(encoder, channel_number, stream);
// Check that the bitstream is tag aligned before writing the pixels
assert(IsAlignedSegment(stream));
for (row = 0; row < height; row++)
{
uint16_t *lowpass = (uint16_t *)lowpass_row_ptr;
int column;
for (column = 0; column < width; column++)
{
BITWORD coefficient = lowpass[column];
//assert(0 <= lowpass[column] && lowpass[column] <= COEFFICIENT_MAX);
assert(lowpass[column] <= COEFFICIENT_MAX);
assert(coefficient <= COEFFICIENT_MAX);
PutBits(stream, coefficient, lowpass_precision);
}
lowpass_row_ptr += lowpass_pitch;
}
// Align the bitstream to a segment boundary
AlignBitsSegment(stream);
PutVideoLowpassTrailer(stream);
// Update the subband number in the codec state
codec->subband_number++;
#if VC5_ENABLED_PART(VC5_PART_SECTIONS)
if (IsSectionEnabled(encoder, SECTION_NUMBER_SUBBAND))
{
// Make sure that the bitstream is aligned to a segment boundary
AlignBitsSegment(stream);
// Update the section header with the actual size of the subband section
EndSection(stream);
}
#endif
return CODEC_ERROR_OKAY;
}
CODEC_ERROR PutVideoSubbandHeader(ENCODER *encoder, int subband_number, QUANT quantization, BITSTREAM *stream)
{
CODEC_STATE *codec = &encoder->codec;
if (subband_number != codec->subband_number) {
PutTagPair(stream, CODEC_TAG_SubbandNumber, subband_number);
codec->subband_number = subband_number;
}
if (quantization != codec->band.quantization) {
PutTagPair(stream, CODEC_TAG_Quantization, quantization);
codec->band.quantization = quantization;
}
// Write the chunk header for the codeblock
PushSampleSize(stream, CODEC_TAG_LargeCodeblock);
return CODEC_ERROR_OKAY;
}
/*!
@brief Encode the highpass band into the bitstream
The specified wavelet band is decoded from the bitstream
using the codebook and encoding method specified in the
bitstream.
*/
CODEC_ERROR EncodeHighpassBand(ENCODER *encoder, WAVELET *wavelet, int band, int subband, BITSTREAM *stream)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
CODEC_STATE *codec = &encoder->codec;
DIMENSION band_width = wavelet->width;
DIMENSION band_height = wavelet->height;
void *band_data = wavelet->data[band];
DIMENSION band_pitch = wavelet->pitch;
QUANT quantization = wavelet->quant[band];
//uint16_t scale = wavelet->scale[band];
//int divisor = 0;
//int peaks_coding = 0;
ENCODER_CODESET *codeset = encoder->codeset;
//int encoding_method = BAND_ENCODING_RUNLENGTHS;
// Check that the band header starts on a tag boundary
assert(IsAlignedTag(stream));
#if VC5_ENABLED_PART(VC5_PART_SECTIONS)
if (IsSectionEnabled(encoder, SECTION_NUMBER_SUBBAND))
{
// Make sure that the bitstream is aligned to a segment boundary
AlignBitsSegment(stream);
// Write the channel section header into the bitstream
BeginSubbandSection(encoder, stream);
}
#endif
// Output the tag-value pairs for this subband
PutVideoSubbandHeader(encoder, subband, quantization, stream);
// Encode the highpass coefficients for this subband into the bitstream
error = EncodeHighpassBandRowRuns(stream, codeset, band_data, band_width, band_height, band_pitch);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Align the bitstream to a segment boundary
AlignBitsSegment(stream);
// Output the band trailer
PutVideoSubbandTrailer(encoder, stream);
// Update the subband number in the codec state
codec->subband_number++;
#if VC5_ENABLED_PART(VC5_PART_SECTIONS)
if (IsSectionEnabled(encoder, SECTION_NUMBER_SUBBAND))
{
// Make sure that the bitstream is aligned to a segment boundary
AlignBitsSegment(stream);
// Update the section header with the actual size of the subband section
EndSection(stream);
}
#endif
return CODEC_ERROR_OKAY;
}
STATIC_INLINE void write_bits(uint8_t** buffer, uint32_t bits)
{
uint32_t word = Swap32(bits);
*( (uint32_t*)(*buffer) ) = word;
}
STATIC_INLINE VLE PutZeroBits(uint8_t** buffer, VLE stream_bits, uint_fast8_t size )
{
BITCOUNT unused_bit_count = bit_word_count - stream_bits.size;
if ( size > unused_bit_count )
{
if (stream_bits.size < bit_word_count)
{
size -= unused_bit_count;
}
write_bits(buffer, stream_bits.bits);
*buffer += 4;
stream_bits.size = size;
stream_bits.bits = 0;
}
else
{
stream_bits.size += size;
}
return stream_bits;
}
STATIC_INLINE VLE PutBitsCore(uint8_t** buffer, VLE stream_bits, uint32_t bits, uint_fast8_t size )
{
BITCOUNT unused_bit_count = bit_word_count - stream_bits.size;
if ( size > unused_bit_count)
{
if (stream_bits.size < bit_word_count)
{
stream_bits.bits |= (bits >> (size - unused_bit_count));
size -= unused_bit_count;
}
write_bits(buffer, stream_bits.bits);
*buffer += 4;
stream_bits.size = size;
stream_bits.bits = bits << (bit_word_count - size);
}
else
{
stream_bits.bits |= (bits << (unused_bit_count - size));
stream_bits.size += size;
}
return stream_bits;
}
STATIC_INLINE VLE PutBitsCoreWithSign(uint8_t** buffer, VLE stream_bits, uint32_t bits, uint_fast8_t size, bool positive )
{
stream_bits = PutBitsCore( buffer, stream_bits, bits, size );
BITCOUNT unused_bit_count = bit_word_count - stream_bits.size;
if ( unused_bit_count == 0 )
{
write_bits(buffer, stream_bits.bits);
*buffer += 4;
stream_bits.size = 1;
if( positive == false )
stream_bits.bits = 1 << (bit_word_count - 1);
else
stream_bits.bits = 0;
}
else
{
stream_bits.size += 1;
if( positive == false )
stream_bits.bits |= (1 << (unused_bit_count - 1));
}
return stream_bits;
}
/*!
@brief Encode the highpass band from the bitstream
This routine does not encode runs of zeros across row boundaries.
*/
CODEC_ERROR EncodeHighpassBandRowRuns(BITSTREAM *stream, ENCODER_CODESET *codeset, PIXEL *data,
DIMENSION width, DIMENSION height, DIMENSION pitch)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
int row_padding;
int row = 0;
//int column = 0;
//size_t index = 0;
// The encoder uses the codebooks for magnitudes and runs of zeros
const MAGS_TABLE *mags_table = codeset->mags_table;
const RUNS_TABLE *runs_table = codeset->runs_table;
uint32_t runs_table_length = runs_table->length;
RLC *rlc = (RLC *)((uint8_t *)runs_table + sizeof(RUNS_TABLE));
// The band is terminated by the band end codeword in the codebook
const CODEBOOK *codebook = codeset->codebook;
PIXEL *rowptr = data;
// Convert the pitch to units of pixels
assert((pitch % sizeof(PIXEL)) == 0);
pitch /= sizeof(PIXEL);
// Check that the band dimensions are reasonable
assert(width <= pitch);
// Compute the number of values of padding at the end of each row
row_padding = pitch - width;
VLE *mags_table_entry = (VLE *)((uint8_t *)mags_table + sizeof(MAGS_TABLE));
VLE stream_bits;
stream_bits.bits = stream->buffer;
stream_bits.size = stream->count;
struct _stream *bit_stream = stream->stream;
int mags_table_length_minus_1 = mags_table->length - 1;
uint8_t* stream_buffer = (uint8_t *)bit_stream->location.memory.buffer + bit_stream->byte_count;
uint8_t* stream_buffer_orig = stream_buffer;
uint32_t count = 0;
for (row = 0; row < height; row++)
{
uint32_t index = 0; // Start at the beginning of the row
// Search the row for runs of zeros and nonzero values
while (1)
{
// Loop invariant
assert(index < width);
{
PIXEL* start = rowptr + index;
PIXEL* end = rowptr + width;
for (; *(start) == 0 && start != end; start++)
{
}
uint32_t x = start - (rowptr + index);
index += x;
count += x;
}
// Need to output a value?
if (index < width)
{
while (count > 0)
{
if( count < 12 )
{
stream_bits = PutZeroBits(&stream_buffer, stream_bits, count );
break;
}
else
{
uint32_t count_index = minimum(count, runs_table_length - 1);
assert(count_index < runs_table->length);
RLC rlc_val = rlc[count_index];
stream_bits = PutBitsCore(&stream_buffer, stream_bits, rlc_val.bits, rlc_val.size );
// Reduce the length of the run by the amount output
count -= rlc_val.count;
}
}
count = 0;
// The value zero is run length coded and handled by another routine
{
PIXEL value = rowptr[index++];
assert(value != 0);
PIXEL abs_value = minimum( abs(value), mags_table_length_minus_1 );
stream_bits = PutBitsCoreWithSign(&stream_buffer, stream_bits, mags_table_entry[abs_value].bits, mags_table_entry[abs_value].size, value > 0 );
}
}
// Add the end of row padding to the encoded length
if (index == width)
{
count += row_padding;
break;
}
}
// Should have processed the entire row
assert(index == width);
// Advance to the next row
rowptr += pitch;
}
stream->count = stream_bits.size;
stream->buffer = stream_bits.bits;
bit_stream->byte_count += (stream_buffer - stream_buffer_orig);
// // Need to output a pending run of zeros?
if (count > 0)
{
error = PutZeros(stream, runs_table, count);
if (error != CODEC_ERROR_OKAY) {
return error;
}
}
// Insert the special codeword that marks the end of the highpass band
error = PutSpecial(stream, codebook, SPECIAL_MARKER_BAND_END);
return error;
}
CODEC_ERROR PutVideoSubbandTrailer(ENCODER *encoder, BITSTREAM *stream)
{
// Set the size of the large chunk for the highpass band codeblock
PopSampleSize(stream);
return CODEC_ERROR_OKAY;
}
/*!
@brief Read the segment at the specified offset in the bitstream
This routine is used to read a segment that was previously written at a previous
location in the encoded sample. This allows the encoder to update, rather than
overwrite, a segment that has already been written. Typically, this is done to
insert the size or offset to a portion of the sample (syntax element) into a
segment that acts as an index to the syntax element.
*/
CODEC_ERROR GetSampleOffsetSegment(BITSTREAM *bitstream, uint32_t offset, TAGVALUE *segment)
{
CODEC_ERROR error = CODEC_ERROR_OKAY;
uint32_t buffer;
error = GetBlock(bitstream->stream, &buffer, sizeof(buffer), offset);
if (error != CODEC_ERROR_OKAY) {
return error;
}
// Translate the segment to native byte order
segment->longword = Swap32(buffer);
// Cannot return a segment if the offset stack is empty
return CODEC_ERROR_OKAY;
}
/*!
@brief Write the lowpass band header into the bitstream
Each channel is encoded separately, so the lowpass band (subband zero)
is the lowpass band in the wavelet at the highest level for each channel.
The last element in the lowpass band header is a segment that contains the
size of this subband. The actual size is updated when the lowpass trailer
is written (see @ref PutVideoLowpassTrailer).
The lowpass start code is used to uniquely identify the start of the lowpass
band header and is used by the decode to navigate to the next channel in the
bitstream.
@todo Consider writing a composite lowpass band for all channels with
interleaved rows to facilitate access to the thumbnail image in the
encoded sample.
*/
CODEC_ERROR PutVideoLowpassHeader(ENCODER *encoder, int channel_number, BITSTREAM *stream)
{
CODEC_STATE *codec = &encoder->codec;
PRECISION lowpass_precision = encoder->channel[channel_number].lowpass_precision;
// Output the subband number
if (codec->subband_number != 0)
{
PutTagPair(stream, CODEC_TAG_SubbandNumber, 0);
codec->subband_number = 0;
}
// Output the lowpass precision
//if (encoder->lowpass.precision != codec->lowpass.precision)
if (lowpass_precision != codec->lowpass_precision)
{
PutTagPair(stream, CODEC_TAG_LowpassPrecision, lowpass_precision);
codec->lowpass_precision = lowpass_precision;
}
// Write the chunk header for the codeblock
PushSampleSize(stream, CODEC_TAG_LargeCodeblock);
return CODEC_ERROR_OKAY;
}
|