1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
/*****************************************************************************/
// Copyright 2006-2007 Adobe Systems Incorporated
// All Rights Reserved.
//
// NOTICE: Adobe permits you to use, modify, and distribute this file in
// accordance with the terms of the Adobe license agreement accompanying it.
/*****************************************************************************/
/* $Id: //mondo/dng_sdk_1_4/dng_sdk/source/dng_spline.cpp#1 $ */
/* $DateTime: 2012/05/30 13:28:51 $ */
/* $Change: 832332 $ */
/* $Author: tknoll $ */
/*****************************************************************************/
#include "dng_spline.h"
#include "dng_assertions.h"
#include "dng_exceptions.h"
/******************************************************************************/
dng_spline_solver::dng_spline_solver ()
: X ()
, Y ()
, S ()
{
}
/******************************************************************************/
dng_spline_solver::~dng_spline_solver ()
{
}
/******************************************************************************/
void dng_spline_solver::Reset ()
{
X.clear ();
Y.clear ();
S.clear ();
}
/******************************************************************************/
void dng_spline_solver::Add (real64 x, real64 y)
{
X.push_back (x);
Y.push_back (y);
}
/******************************************************************************/
void dng_spline_solver::Solve ()
{
// This code computes the unique curve such that:
// It is C0, C1, and C2 continuous
// The second derivative is zero at the end points
int32 count = (int32) X.size ();
DNG_ASSERT (count >= 2, "Too few points");
int32 start = 0;
int32 end = count;
real64 A = X [start+1] - X [start];
real64 B = (Y [start+1] - Y [start]) / A;
S.resize (count);
S [start] = B;
int32 j;
// Slopes here are a weighted average of the slopes
// to each of the adjcent control points.
for (j = start + 2; j < end; ++j)
{
real64 C = X [j] - X [j-1];
real64 D = (Y [j] - Y [j-1]) / C;
S [j-1] = (B * C + D * A) / (A + C);
A = C;
B = D;
}
S [end-1] = 2.0 * B - S [end-2];
S [start] = 2.0 * S [start] - S [start+1];
if ((end - start) > 2)
{
std::vector<real64> E;
std::vector<real64> F;
std::vector<real64> G;
E.resize (count);
F.resize (count);
G.resize (count);
F [start] = 0.5;
E [end-1] = 0.5;
G [start] = 0.75 * (S [start] + S [start+1]);
G [end-1] = 0.75 * (S [end-2] + S [end-1]);
for (j = start+1; j < end - 1; ++j)
{
A = (X [j+1] - X [j-1]) * 2.0;
E [j] = (X [j+1] - X [j]) / A;
F [j] = (X [j] - X [j-1]) / A;
G [j] = 1.5 * S [j];
}
for (j = start+1; j < end; ++j)
{
A = 1.0 - F [j-1] * E [j];
if (j != end-1) F [j] /= A;
G [j] = (G [j] - G [j-1] * E [j]) / A;
}
for (j = end - 2; j >= start; --j)
G [j] = G [j] - F [j] * G [j+1];
for (j = start; j < end; ++j)
S [j] = G [j];
}
}
/******************************************************************************/
bool dng_spline_solver::IsIdentity () const
{
int32 count = (int32) X.size ();
if (count != 2)
return false;
if (X [0] != 0.0 || X [1] != 1.0 ||
Y [0] != 0.0 || Y [1] != 1.0)
return false;
return true;
}
/******************************************************************************/
real64 dng_spline_solver::Evaluate (real64 x) const
{
int32 count = (int32) X.size ();
// Check for off each end of point list.
if (x <= X [0])
return Y [0];
if (x >= X [count-1])
return Y [count-1];
// Binary search for the index.
int32 lower = 1;
int32 upper = count - 1;
while (upper > lower)
{
int32 mid = (lower + upper) >> 1;
if (x == X [mid])
{
return Y [mid];
}
if (x > X [mid])
lower = mid + 1;
else
upper = mid;
}
DNG_ASSERT (upper == lower, "Binary search error in point list");
int32 j = lower;
// X [j - 1] < x <= X [j]
// A is the distance between the X [j] and X [j - 1]
// B and C describe the fractional distance to either side. B + C = 1.
// We compute a cubic spline between the two points with slopes
// S[j-1] and S[j] at either end. Specifically, we compute the 1-D Bezier
// with control values:
//
// Y[j-1], Y[j-1] + S[j-1]*A, Y[j]-S[j]*A, Y[j]
return EvaluateSplineSegment (x,
X [j - 1],
Y [j - 1],
S [j - 1],
X [j ],
Y [j ],
S [j ]);
}
/*****************************************************************************/
|