blob: d5c0b78f89329d97268767b8105c57fda23e7dd1 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
|
%PDF-1.5
%
1 0 obj
<</Metadata 2 0 R/OCProperties<</D<</ON[5 0 R]/Order 6 0 R/RBGroups[]>>/OCGs[5 0 R]>>/Pages 3 0 R/Type/Catalog>>
endobj
2 0 obj
<</Length 60106/Subtype/XML/Type/Metadata>>stream
<?xpacket begin="" id="W5M0MpCehiHzreSzNTczkc9d"?>
<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.3-c011 66.145661, 2012/02/06-14:56:27 ">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about=""
xmlns:dc="http://purl.org/dc/elements/1.1/">
<dc:format>application/pdf</dc:format>
<dc:title>
<rdf:Alt>
<rdf:li xml:lang="x-default">logotemp</rdf:li>
</rdf:Alt>
</dc:title>
</rdf:Description>
<rdf:Description rdf:about=""
xmlns:xmp="http://ns.adobe.com/xap/1.0/"
xmlns:xmpGImg="http://ns.adobe.com/xap/1.0/g/img/">
<xmp:CreatorTool>Adobe Illustrator CS6 (Macintosh)</xmp:CreatorTool>
<xmp:CreateDate>2013-09-06T15:59:19-04:00</xmp:CreateDate>
<xmp:ModifyDate>2013-09-06T15:59:19-04:00</xmp:ModifyDate>
<xmp:MetadataDate>2013-09-06T15:59:19-04:00</xmp:MetadataDate>
<xmp:Thumbnails>
<rdf:Alt>
<rdf:li rdf:parseType="Resource">
<xmpGImg:width>256</xmpGImg:width>
<xmpGImg:height>184</xmpGImg:height>
<xmpGImg:format>JPEG</xmpGImg:format>
<xmpGImg:image>/9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA
AQBIAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK
DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f
Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgAuAEAAwER
AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA
AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB
UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE
1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ
qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy
obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp
0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo
+DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A9U4q7FXYq7FXYq7FXYq7
FXYq7FXYq7FUHq2s6Vo9mb3VLqOys1ZEa4mYJGrSMETkx2WrEDfFUv0bzz5S1zU7nTNH1SHULu0A
a4FsTLGtaf7uUGIn4ugav3YqnmKpV5q19NA8v3urvCZxZxNJ6dWVTxFfjdVk4L4txNMVeT+ddb/M
wTWOs3PlfU7XTY5JH1HTdI1GBppFt4y1tLtRm4vV3ACkgKrqwU4qxj8nvN12vkjV7dNW1G489ald
ytb6JbW8D38TIiujTvPCyLCy3EfqTSqiAg8PiryVZ3omg+ZX1Kw0HWPNOqrqlo0l9JDpdxbyCO3k
ZXj/AEnPcRc5DJKjCNIUChQVoQC5Vem6zeXVlpV3d2sH1m4gieSOCoXkVFaVYqPvYfMYqwnQPzh0
7Vm0zTrOxm1TXLrS4tSvYNNaB4bZmjUvHMZZo5YjzeiiRAW/ZrvRVB6N+b13f+a9U0O+s4dJfSri
KBrRmkvtSm5KrOY7KzEren8Y4zcuPH4iv2lRV6Jp+owX8ckkKTxrG/pn6xBNbsSFDVVZljYr8X2g
KVr4YqisVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVaZlVSzEKqirMdgAO5xVhvn
/wA6x6f5Evdd8vztqNxDLDHZ/o2P9IepceuiiFkhP2XPwP8AEDvseVMVeN+dfz4/NGzms9QtdIfS
tAsg6XUmqxW9hcX1zDArHhaXcnrKomJ+GPk1OhJquKs1/Kj80/Idj+Wuk6lql/YaRPrd7eXB0+KQ
MyTXt/PJx9NayBFJ4hiKBQMVX3P/ADkl5W/xM2i6ZbLqytfLp9nPbXtkpuWELSzyRevLDEsaHgiM
8o9RiVXcbqpH+bH/ADkDoyeT4Ro8Fyb+4k+s32nXCxxSJp9pffVbj1H5usbSyIUj48mHdRiry7zu
v5l6xpbXui6jcaV5Ya2t/qHl97261G9jeW1BhSsimUfWqPFFJFVGJMZbcjFWSf8AOMfmnV2aLyho
NppOmSWqST65rV5HJLeXk1VYW5txJbyq8BlZAzPxIViq7HFXqnnXyf8AmGZdO8w6brmlW+vadKzT
TtaJam5gdX9WH1pWugkaxUKoys3wsfUFfhVRX5L/AJjeYvPOkNeXtlDDBZyzW95eLKrGW5V6qkEU
YKiNEYVcyNXbiW3bFWN/85M38lr5eF3beXLqXUtPaCWy80xLAI7QyScWUSH1ZBXcfFGFVijV5AUV
S/Rf+cgfy18v63aeV9Kkt7Dy/pgFtfXkh9ee6mLehG0LWolSQ8lMksrt8QII3Joq9R8j+eZPNN/q
6LZTWVtpwtECXUUtvP688HrTK0UyROETkqqxUcjy2oASqmvnDzBY+XvLV/rN/HPLZ2kYM62pUTBH
YIWVmeILx5ci3MUArir5r0/81/PmteYtMtPJK6lJaalMxC6lc28lb21tSLiJ242pcx8VdYvrFJFU
MVAZhir0/wAs/n15M0/Qre08z6xN+l7JktNRubm2FvK0nFSZ5LeJ5mijJkCcmADNXiKYq9H8t+a/
LvmWxN9oV/Df2ysVaSFg3E9gwG6kj4gDvQg98VTbFXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7F
Uj80a7daZbssNndyvLE5gurW3+tKkqAsEdFPJeQHws1E8WG1VXgvnHzT52gs7/VrHylrVzc2l5a6
tb64kUiWuoR2l2jlLu0eRpEgEaq0IVeaUr9nkxVSSf8AO5NU8q2PmLz1pmq6xKbx7vT9Fsgtnpcd
uqtGs/1mBWmldPjVllkAO/w0G6rD/wAtfzN/LfyZ5e1nVbry5Bc6zq2pLJp+nS24nij01ZF9SCOe
YuyngWoTUVp1pTFVb84/PegaveS69oWlPb6Bq+nwwRWskbQfWTG7rLI6RSPCYoZVRSyEN6sSj7Px
FV5nd63bw62j6nZQ6xfrdrNe3lzNdUmBjRWhk5+iw7+pyX7Q2+Cqsqm2p/mP+YtvHYwySJEmjzC/
spY4YJfqj3SoYQlFMcIVYh6UfFeH7IFBiq2K71/VYtK8yWdrbmSxmtrBrOyuUS+vHSRWUehHM17V
jGrmXhUyMzBthRV9Q/k1+Z0f5waJc6Jrvl+0eCw5JqXqTluMciFIDFEyvKXaroXLrQCvIk0xV5v5
qutB/L381H8uaJ5mvV8nTrDc+btLtg8skS2yiKO1We1USrzj4oauD/vxmNMVTj81P+ciPyt1j8tt
W8qafZXks8iNY2drNG8bQiONTFcSF2FAs3w8SxbapFMVeR3n5j+W4rXRX0S0tLLUPL8EQEkNmtql
3JENzJKvO7IkSSWOSki8mZWOys2KvVfyz83eavMWrnV/Kq6lY6TKi28yTSWKaf8AWrZizlbdWtvR
gjjnWVgisW+xXqSqz/8APPWJo/LGqaN5ptXFhqEF8NJvobRrmAXqtCumxrJGxaKRwzhvWCqXYgFl
GKvFvPPnyLQfNdrB5X1OK7tYA2opf6TatHdyXuqcI5rGSQ3EjoxhhA5FfUU/CVruFUFp3kzzTq+m
XnnjzX5cFxp2vxmw0SCSaUTxXF3IrW0lnBILh3RiGBMjKTzLhwfixV7B+SX5P/mFoNjaXGtzNp8Z
kWV9Lh1CeIBPg5CWC1Hos59NWqJAW+y/w/Dir6AxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KoPV
tVtdMtHnmZTJxc29uXjjeZ0Qv6UfqMilyFPU/PbFXm2lfn3oTanbx+YDaaLp2owero863cV+90wC
CRf9D9VYvTfmvx7vtShDDFUk/OH87Vt/JNzN5Yt7yWZpJILtbjTryNGtmVo2kSWSD0OLK3NWL+FQ
d0Kr5E8pfmD5n8tWWp6dpGofUrHWLd7fUoHjWaGVTGyrVWVmVviNCO58K4qu8geRtb8+eYbbQbC4
giuJVZIJLyRoov3al+IdUlJIFTxCk4qzjzr/AM4/+e/KOk6La3dx9cn1G+pZWENPq6SyxM8nKTmG
Eojtl50Xj/K70NFUD5i8xfl/feVdLksDcT+Yr+wuI/Mmpanc3NxdrfRSQtalQHVJV4QtFH8HFVYF
viBxVI/yt8v6h5v12y8mWtms/wBevYbme5aWVfq0EFTcsImcW7Fo/wCZC2wVetMVe8a/+Vus2/nH
XNM0+20zSPJ97F+jL+5mQBIjLF68d16Ns0AtlnZFj9UcU5qU49iq8a1nS/zK8hx3188cmitZ3L+W
LvVLCWICZZoTdPDIqMjPWGSN4X4KONBXko4qpto3nbS9Psddj8i2selWUj2d482s3sCtcxaSYZjC
8Lc5JZ5bp2cei6/AeIG3wqpHd+dfN35iedLG61XRY/MOuXMPoW1jBAsQuFTf4xGnqMAiPVkdSBuG
WhxVkdj+QXn7RNCW71vy7DcXGryw21rbfWYfrsCidRKPq7sFb1IeRDRMXQDkeK8sVZr5Y86+Ufy6
1byra65ePrHl60stTS3nkhjuI7a7ivZFR7YxktymW2jJDcvT5KVIV9lWJ/nR/wA5G6p56s49P0+y
+qaCk0M4jlAkV5ooySsnJeMoV5a8WHH4VPE9cVdpln5Lfyl5a0K88/zWXlaRL3U9QePTUtWjvoFj
jWOORYzPdOfrkiVaRqKuyheOKobU/I3ne+8oarDZaTd33ljSvQvdJn1LUHlubCyYiTexgcQp68Uv
rkelVUrQmmKvY/Kt/wDl6vliyuPMegRaR5zs7JmhutMFxbRXX1daRU1PTB6UzXLKw4o71NV41oCq
938v6u2r6Tb3slpPYzyIhuLO5ilieKUoGeP96kRcKWpzC0OKpjirsVdirsVdirsVdiqyKaGXl6Ui
ycGKPxINGXqpp0I8MVX4qlPmnzPpfljQ7rWtUMgsrRGeQwxtI3wqWA2+FeVKBnIWtKkVxVC+XPOO
na5ob6/aMZ9JlmdLGS2jlmkeKNvT5PEiGRWMit8PHZaV74qraL5v0fVY9OWN2hvtRs4tQj06Qf6R
HBMvJGmVOQjrQj4juQR1xVMdR06z1C0ktbuGOeFx9iVea8h0am24O4INcVec6x+X/mu48ux6LrYs
PPlolwj2kV+JNOkgPpmL1HnVrz1VQOx3j5EMR8WKvIdG/LS7g8+6p5b1qbSfKuuT2tu3l6S0skkk
vY1lkZpbKdpYBDcwxwIremIwamqU+LFWUeZrb/nJtbCaFZtN1XRHYLDHPbxXF+xTiypLHbxSwCQS
R8eW6K27NQVCrxjW7S0srIvq13DrX6LkvLnVfKl/LbWa2d2z8AgksJQ8snPl+69NANxQb4qxiw/K
Dzul3d29/byaJe6bp4110n9QynT2kWJpoY4kc1jLVfkwIAO1Riq38xbjzzp/1W01HzXNr2mmZ7zT
5FuZn4MzMVnaOQ8oWmDNIgPxMp5dCMVYNGWimDUaKRaMrglSjVqrCgJ2xV9N/wDOLGoaN5V1bXtK
1HTJP06YotRgvy1Wk0mRUPOOFPUSsayCVuLlipIG60KrNta/ODz0uv8AmjT/AChJoWo+X9CgfVpN
YvJWu4zbyrza1ZrWdQk3riRYkYVK8QQKVKrzf88Py9/Ma38sy6/d29pDpV+tpNqdvobFbD6wiiOO
ea1nWNoCsfFDIrsPELXFXz4bSREjiuovqqM0hW7dZPiKqKoKVUgGnQd99sVZI3nRdS87jzNrgkRp
uc80Wj8LNjOITEgUxiL01do09Tj8RUtvyNcVZ15KTRZNR0m883+TPMl/pbWl0EktzeTSXtw3BpLh
S0sP7tItmEO6gKWLHfFWO2ejflt5l85afY2CXPlzyZc3zx3HmK+B5xeqjSRWsjNNLbLThxEhINPi
YfCaqu803lzc+Yb3yb5YddRtb6ePRtOgErTTqlrPHDHV4Fhs3N0baF2ZQ/wqg5fDirML3/nHn8xf
LGt6RqOraTp2rWV3JDbpa2l1BBBFdOgSJJRdxmEtIyBalHV22PxMMVTHTvy68w+W/L93dW/mRtD8
82WoLdy+SrhEEF0wjZYhbIvJJi0fqmMxq6gfD8JXlir3H8pfNmiEJFqOpafpmr6nLNLaaFaX8NzF
cxSgTLfrEFjkikmCMWUom9SUV2OKvWsVdirsVdirsVdirsVSLzT5ntNG0++eWOYyQ2pmjcQXLQMz
clRDPBHJxYutCB8W4oNxirxvyb+cXmryvb6dYec/Kh8ueX47aL1tSuPWikmuWDtczKZl9NmkciQx
SOsv2uIkY0xV6LrWratqemXPmTyJ5isJIraF2urO9DSW7NHHy4O4dTZuityblGT/ADCmKvPdL/Mj
80dX046LqH+EH8xNN9Xv/LuqXXGXesnIKjNHKjc0WMRh6ftOzVxVhnmD8wPzm/LG4j03Wjo9rp+o
eh9Yv7OVpHVra39AqaRzyRySpDGpc2zL9npucVTz8hvP+v32pam/l3Qob3TdUHrSWMOomW4sJIR6
KzXM97xYpdSBn4KrON34/FRlXpXmLz55j8m2tpc+YuGpahceq/6H0qKZo47ZCoaaS5Nu/MxErVmE
C0ZjQ8cVeAXH59fmxonmjRLayee+0i5u5prHTpTb3U1/FPcMiW6S2wkLJWiQsgpyJ41QKoVTT8w7
3W9XtNL/AOVi6rqflq/t5JH0yUPbxWdrNco72UjJCfr8pjQcZZWhVkPw0WrNirGrTzP+U9t5mW0v
9KbTdRtfrJ8x6kdRurv6xcWxdgbW7V2kIulUxupC/EykUKHkqjPN/wCd9jYeUNH8o6fplkmmnTJo
fNGn2hWNbi7nha1EsUsSSwsB/vQkod+RpyAZRirCJPz1/MefzHY+a0aFp9HsY9F+sNbkwyWzO0nG
6UFkLzBWDUpsDxAIriqSarBqg1KL9IaLNpuieZ3+uaXbpGZxHFcyxu7acHaKMufTWOvXjRTir1r/
AJx80nyp5i/NDzB5mm+q2nlTRrIWwtdQitIPVS4hNuGmihWG3BaOGR5SFIqd615Yqkn5jWmj+RPM
1h5o/LHzPDr9jZpdKunIv12LS7a4d4zFLIpeMwSSXDhFkpWtfirXFUk0/wA2aFoWlxKtteS2gto7
W3vIri9W2lu4kursTpEzWsalLiWzYxujLVGZan4sVfU8f/OQv5U2Hkm11OfzGmpzCGOBoOFb6e49
IFhJbxr8LMftGnAHv0xV8g+WNa8n6t5yutX8439zpHl63u7jVLPR9NWRpjPcyqRDasKJDwCIWdiP
hQAb0oqxy/rrHna6Hl8XF0dS1GRdJE4QXMv1iYiDnw4osrcxXjQBumKvbdW/5xx/5yI8yH61q+pW
jM3KX6vLeOqiQxhCfTjjKepKqgM3Vj9s98VZN5Z/5xIjsdIjn1K6t/MOu2dxA9zpBmkt7OGhWWe2
LqHaRpYXWhIjoeJ3XYqs1/Ld/LHlbSvM+t+WfLSWWkC7FvpcBkF3qE+plmt5YCYDdelbrLwSMKWq
OTioYVVemxXPl7zR5esbW9ube6Gq20F0sSOqNJQLMJI0Duy8WHIUY8fHviryv81fzA0nVfNN35Qv
j+jfL2mNGmra7JpLazHNcuiyfU4o/QnjidI5gfUatC1OPfFVPRvJ3krR11A+R/N9vfalq1tbh9N1
prYafcW80sjxQRG0htDAzySvx9OrIxHw9iq9y05rk2MJuljWfiBIIZGmSo2+GR1Rmr7jFURirsVd
irsVdirsVdiqC1bQ9E1iAW+r6fbajAteMV3DHOg5KVaiyBhupIPtirwnzd/zje2l6hqnmDyagvZ7
+kUXl2RmgihjbgeUM/rKlI2Tl6cqNGy/AVxVLLKe6num8s+b9QsfJ6NS1tbW78u2DQzvHEWnKXav
c2Cy/ZHCp2C0X4sVZz5Y/J3yosEqaJ5zvbhpF5XL2Y0VufMABpONi5YcRReZIA2GKvmnzU+o/lJ+
br2nl7V9W0zTojFbT3ktvFHJLZJxjconFYbkKqni7Rirb7/aKr0DQ/zmvZvzHvbe08063qmlahHZ
QW+ow2enG5WsgDfuo7S8L8frHJY4oeRZgjqpqwVZdN+VPL/E2q6xLdaP5avrVJ7vULp7GDV7w6fW
e39Nbe3it7NE9L1SWj9Y0APGhGKsPsPysuNa8vaf518/T2+oPq1vFeW93e6sbS7iU0YmVrqMRSBU
f4Yo3iRVFPtHniqVXP5J+X/NWqW9vpUF/Hb26uJL7SNNtpIHV5TIqySx381seKlkVlk50A5K2xxV
j/m//nGvz3b6zdReUNH1KbQBEszS6tLY2rKEHxc5PXWJ6MCw6EDqO+KvKNQ0HVbCY290IgQjSGSO
aGaMrHsf3sLyIdxxA5faoOuKsnl/J/8ANmbRodal0K7k0lrNLyK9d0MS2npc0csX+BVi3oaUGKoz
8htR8i2v5hQDz0ltJoV3FJFI17Ck8ImahiaRnDGMcurj6fhrir6L86ee/LsHkXzfceS7LQIvLlmi
2VzHLbhItS9ZZYBLbywkLKIptlUxHlwaj0IOKvl7yF5V1u6kHmL/AA02ueXbCdIdQklEi2iM5Ufv
ZI5IPsCQMw9QAChb4cVevfm/qugeWNH8wHyfo6eWJNX/AEdpdzZSQw2+owhoZ7m5ICNKyQzwNbq1
GFTyqAa8lWM/kr5Y/LvUBHJ5hutN0zUoYk1Gxu9YlSW1uStw8JtWs5Xt45EcI4deXMEIysQxUKsY
88efJPOXmXRLbVnsrHSNNdLdLjSLcwJDbTSq8hWMEhmiHTioqR3xV9VaXonkJvLV3a+UdZm8k6t5
dWODVtUu0liuFRmEiPdLPLHFMk4o6szNRWABXpirAtK/Mdjaebrq5/Mi40vym98IrfWJNPT9L3l5
JbRLNFAqD4Ft1jVarECOQNV2xV4N+nLPUNY/Rr+YdRtvLGmLfT6Jcy8BOs5R7hXkjjYD1LmZQpbk
W3X4jxxVEyxeRPLt5NHOW81WNwls9nrNpLc6dfWjp8TLCsnqQsPh4VdCQKMOPTFVfy9+eP5geU5J
18va3O9teXDX13HexxTF7iRlaQySMpkkY+moL8lqK/CK4qzfyp5987tbax+ZI8s6Drd219CLy89N
TPYh14kG0SsiJKOY9RRzLVJLLiqP8m/mz5i1X8wofMVhe6NZQTyu1r5Tvp7yGys1ljWKS5EkKtBH
NMxMXNlNS5YooNQq+mY9f/MGER29xoVjNqFynq28KagsSKoqZBMzRvJyTmifuo5F/a5ioUKswFaC
ooe4G4rirsVdirsVdirsVSvzJ5n0Py3pcmpazeQ2dsgIQzSxxGRwCRFGZWRWdqfCtcVYbpX5i+ZP
Nc9/p3ljR5dOuLWSP1dS1uBoYYYJ4g8bC3ST1pZiTUR1Qcd2ZagFV8+/mb5K/MXXNc197bW5vMtl
pCXOr6hftaPa6TDPYh1ns44ZfrMdzNSGJeKMQpHFulQql3m/8nr7yhrNpf8A5capeNqumQx3l1eT
vFZpLDKiyRXdo7mOJoS3JJULmlO4JAVYBf8A5oa/q/m1vMnmmw03X7mO0+pTwXUUSxSRhiqyJ6RX
lKrNUOlT/scVZF+Uv5m6Laabb+S9Y8u6TcR3V9DNa69dxESWh5oXdvRUTytxRuHGRWqeNeO2Kvdt
F0h/Pn5iz+Xr3XpPMn5d+T41uz6tTHc3Nz8drbXUp2vFt4gz+rU8hxDVNWKr3GCfTLi6FpFGj/VI
YLmBwqmMRzGRIzEw/wCMJ6dqYqj8Vef/AJlfnR5c/L2WA63bzy2l1HILa4tTHJW5iBLW7IWVlYrx
o26ivxcdiVXy95w1aL8w/wAx/K/mfV9Nh8v+XtWZobcanLMLBxZoCPUuRGicZHojJGBt+0OXIKvY
I/0l+dPmm70GLXRH+W3l2CGLUJtGElouq3U6B/Ro7ScIogtCtWp/sgVVYj+ev/OKuoyalJ5g/Luy
gFgYQ15oMbFJBKleT2yt8DKy0+DkDX7Na0Cr5tk1fWbfSpvL07Olmtx6slpKCGjnT4G2bdG7MPvx
V6D+Xv50+c/LGgR+UfKNoLubVQ8FxbXUYule4nkZUa1gRUIdo2VG9QyK1B8IpuqxrzvovnP/ABVZ
6X5juo7vX5ore1KLIsrRNGfqccEzRjj6kfohW3b3JOKsh8x6QPIdhqnkrX/L9lqmqXE8V5o3mm1l
9SbgsavF6asH9S2dTuvFRuftFVoq83v57ae8mmtbcWls7kw2ys0gjTsvNyWanicVTO01rzhfWMug
WN3fXFjeOks+lW7zPHLIvFVd4VJDNy47kdaYqt8rXNlpvmmwuNW0t9UtrO4V7rSq+m8vptUxmqSd
x8QK7jbFXoH5s/m1defPMlu2m6VBptlpjwDR9KntYpriV/hVUZBC6uD1ETfBTb4thirMtP8Ayj0W
x/I/U/Pmt6JdaT5s095Z4mnJSKZZV4W5ht4yiJEHnRviU14EbqcVQE/5L+TdX/L7TNf8q31s2vWO
nW581aDfXItHMk0YlM8MtwVWF9/gLAxOu478lXmGs+XfMugaRFdiyuYNHubhlTUgkckJlRiywi8t
2kimISPlQ0oQ3EU5VVSXTLqa2eO+t1tPrFpIJQlxGkwlJNQjQTB4ZFXjXjwpv3NBir6J/wCcdtc/
MXzJ+ZNtPe31zeWGmwuNQvbeMC2d7kyXDrdsxhLuHk9NeKsAQKDiORVfRutee9F0fznZaNf6vY2k
VxYXF1cQXMqRSxmJ4xFJyZlAR1aUEHrxBHRqqsh0/VtK1KNpdOvYL2NCA728qSqCyhgCULUqpB+W
KorFXYq7FXYqgdW0LRdXiSPVLGC9WIlofXjVzGxFOUbEVRv8paHFXiPnb8ldc+sLHpHmnUIdW168
nu7t4ZpIYl9NFaNpAZJJTBAFWrSSueRAArICqrwbU7jWvImrp5T80XDXFswak1vql3G3oXMrEzS/
VjfxopAbmkUfMgmvLrirGNW0/WrrTNK1fXra7XybbyvpttrMUcU0kprI6iOWRbZ5+CjiOZ4jiQOP
2Qq35v1HTPMljoMmkvqN3cWNnb6RfTapHaWtnbSBiYI7WS3aONI3/eGk2/2mJPxMFU7b/nGH87P0
fFer5eDiUgCBLq1MoB6OV9WlD8/wxVBweb/NHkfTtT8la/oCRgXDSyCZWgvYJpI1YKtwOXON6Rsy
sGDJ0I5VxVlXln88tE8peUNGk8tS31p5siiez1yCRPVsJ4kWV7aREkmf40kZE5bfCz/CaIAqjfym
n/MBH0/zzDr1nqt99ZubCz0nWL279Oyl1AFI7uRQ/wDdzyqYQfsl6b8hVVWvMfl7X/MnnVPJ+oeV
refz3qF1DqGoagbi4Z1jjWkzyTECz9OWONf7qEqvIDdxxCqZf85G6/5nvLaPy3rfle0tb7S0XUNC
bSJjcPp1gjGKX6yI1CokixIRsFFB4Yq9R/5xk812V95dttA8u6SsOkaZB62r6m0qhjeTqpWP0uby
vI1H9SRlRPh+BaEYq9o1DVtN06yN7fXMcFoKfvnYcTy6Bf5iewGKvzm/Nb6pe/mD5o1jSn+taNd6
tdSQXyVMTtPI8tA1AN6k/LFUv8hedtY8k+arLzJpIie8smNI50DxujqUdG7jkpIqpBHbFWceUbPz
z+bv5xXevaItnZ60rnV+V36jWkHoFFiB+CUtR+HEFfopir2fy7+UUdlrUt/+c1+Dr+p+lY+WNVsr
yaFLMWFsX5xTgxenJReS8l6qx/aNVXzh+ad9pUvmy6stIu5b/TdOklt4r25S2M8ziRvVke5t0Q3I
d6sssnxEdcVZN+Vnn38vfJ+k2uqPYznz5Y6os8N+6etbGxkiaGSL0hJHXirM29Dz4sG2pir1j8xv
zP8A+cWvN4uoryzlbVZwBF5jtLJ7eRJW2WZmBjmdUJ5MHRtugJxV5Lq+u2SWtt5uh8ytq+rCOC3/
AEdrUr31xNbrQvHvBG1u0Uu6MH8WSQMo5KoLz5+ff5j+d9OGl6peiPTREsUtrbII1lCsrc5yN3ct
GpPRfBRXFWRat+dHla3tfL+o+WvLkdnrenLIt5Nds1xJcerafV39eSRXFwqSqsiFz1FOA3LKpt+Z
kfmjzL+Ww846HoWlWfky9mF3Lp1jcyXlzYXSlo7ido+EEMAnDqJkjQjozAElsVY9o/kP8rvMP5fX
j2uvHTvPOmw/XDa3z20NrJCW4egswMaFvUb7bkPuF4laHFWHW3njXjpg0u2aOx02OOCO/tre5lt4
7wwSAwvPG0rK5WQ8mMKqepPiFXtn5O+RvKcMt5e+fdfMer61Akk0EOqNHcPbzESelcKHEs3qNGeS
IXI4/FQUqq+p/K82hzaBZSaFGYtIMYFmhhlt/wB2vwg+nMqSb0rUjfr3xVNMVdiqA0TWrXWbJr20
Vvq3rTQRSNSkgglaIyIVJqjMhKHuN8VQN3538s2usNpEl4GvYqG8EavJHah1LIbuVAY7cOB8Pqla
9uuKqHm/zFqFlp95DoyQrqKQ811C/b0dNti5oj3MxpXx4R1bpXiCDirwTVvP35o695mF5oGiyaJq
1xDNpkWs2EEl6moW1rMrm5txdQxxiOvP096ksokZQAcVSSfTfJn5eeZJX8zeQbjXbi+WK5mnvtSt
rvUDNcuKRSWMQW1dpJFdhGhdqKW+yNlUtk03zLrOua1qup/l7rljoep3EFr5etFu5NJisTes9qy8
pI2CR3L3FZAicKn4qg4qyfRP+cT49N0u9v8AzZ5tfy7p1x8U+n2VwBBGn7IuLuf00kI7/uwK9Dir
DtM/OnXfym8xXHlbyjq8PnrymSn1AzpJyWVlCskEqdaOKUXkhH2aEnFUGPzH886fqPmy717y6+k6
n5nd/rPqaHJcycZIfS9BWubm29NOI/kYmtTXYYq8i1bQtc02ztJNS0e605JOSw3FxBLCs42bYyKA
xXl1HamKoe31OeOyexeSY2kjcpIUmZEalCKp8SGjKDuv8KKsr/LrzN+jPMdnqTeZrjy7f20ZQa00
Ml9wi4mIWy2w5CReFD8RAHSmwOKvoLy55r/LT/DhEvmuWx81+Zg9zrWu67ZM8WpQiOSCSIhXgj+r
8eSRQxzAoeOxYYq+f5V1Pyv5UuLrRPOMMcWt3Elrc6FaTyLdyW1tKwhnnji5pGGIaiu4biajkGxV
J9duPPOnRWNlrV7fwVtudnY3M04MdrMnBaRuaIksewA6r7UxVLNIspdSu4LBrlbW1L8pbicv9XgV
iqtLJwVyo+yCQvhiqYanoMUNre3FhFcXOnJcu2m6o6GJbixWR4fVMbfF9tUrT7JJDdsVTP8AKz80
vMH5ceYn1nSEjn9eFra6tJ+XpSoxDLXiQQysoIP0dCcVTj86/wA6NQ/M3WLe4a0Gm6dZqUtrNX5k
7kh5WovNxyNNqKCQB1LKrPy+uPyPtPLeoyedLfUtR8xTrIunQ26lLa3KqRGxZJo2kZm3bkKAdsVZ
t+bfn3/nH+WS3j8neVrS7eGMobmKF7OFxJbSKpZAIZPUgmMTVZTz+IHxxVj/AJBvfyJPklLTzu83
6Stvrdz6FjaMt3PK5RIIvrw24qilljZQtTUv+xiqReTfyQ/MTzrod15g8taak+mQSSRxh7iISO8Y
DGNFYqWYBhuQAcVY3Bq808ltbX1oZZLO3a2sWtY44Z439QyCR+KfvypLArJuQach1CqvF5ZgfVm0
5tTtZLaFPXS7hlqk8YCyOkLOVUTmNifTk4nkvH7RAKr2fVPyX8lL5atvMmkea9Q81+UGSSSbRLaa
K3vwyw0aaJZg6HgLYGRGiVljTlUhKYq8d8z+W9L036hqNprttrOnaqsrrLD6huIXjfg8c8MghkV1
5KwLAK3UYq9b8jeW4L3UbDTdFsZPOtvprLdiYS2ttFJpy/BNbPp16pCzpK7hgJF57HnvyxV9XeWv
IfkjRTbX2j+XbPSbxLcQrJHBElykbAExvInIk/zfEfmcVZHirsVYD+YPnay07UbTTIvMI0mdUknv
hC+mrL6dFjQNJqLiGGkkyH4kYt0UHeirzPzF+YHmSy/K6wt7GTVNI1PStOjjRYtJGoafrESRonqw
XMkMyxrxHMPJx2NSrimKobSPKPlLyV5VHmm5/MAX2seZdO9O+a5ezu475Ej/AHkVn68ltOAgcLQX
ArsCPsqFUh/LX88dO8o6HfeV7mx1Hzb5YtppPqNz9Tjg9LTvTEtwJLdmdyqPJsG+HjT4h0xVryHo
35m63c3PnX8r7W58u21xHOH/AMQTi+ini5yPBb6cXtjKIubFm5Px503PHdVkemX+hfkrq0mtfmba
3Gp+bdb5MnmmGUX4noQsscEciWzWoSNkBWhqNlJVaBV4r+df5w6l5s843X6H1SS88vLNFJp8QS4g
jJWNBx+rySSb1FGbivI1IpXFUvvL270GK0t/MKtd+atTj+vxXuoXK39vBDqEQWF3gkVo4pSp9RpG
MjBeNFVt1Ve4/lrd/lB5V1JTS7/MHzmIIZr3XNNs5dVigl5EpDZ8EIhCClCtD06fZCqZ2n/OT3mL
S9XudM81eR9Ttru6U3ejWUZjNyLdiFUXKMISi8uVGK1GwPI1bFUnu/NH5w/nNDpa6HoeneWrKC7n
lttVvZo5rloRF9XnMdvIpMkXp3VHIiZSxX4hTFXmP50/kP5Z/LzT7GKz80HVPMtyVrohgpM8VDzm
QRGTgoYbCTrvQkimKvIJEspb1hHys7b+WYmVlIG61RFqS32dh7nviq20mgtr2OWaCO9gier28hkW
OVQehMbRyAH2IOKvWPyt/Nb8q/K/mCfVNW8iJIT6YsXgma7NsYy7GRY71mrKxZRyDrQKKAGtVU+/
Mr/nIXyf+YumSWGq+W/qDmCb6teqsM9wlz6dLVTclRIkEcxaST015OKLSnLkq8BxVNJtZlEMMVlJ
dRkQmOZ5LhnJaVTHOI1URqkcqFVZG5E8ftU2xVLWWm1dwSCBuNvcYqnnk/ydrXmi9ubXSVje5tLd
7r05Co9T0yKRIpqXkkYhUQAkn2qQqyny156v/LGs3B81+U9M1W0F0qavp+padbpeqzRcOEckkfrQ
njFy8OW5FWNVWOwLZazq8cOk6cZtTutRA02zPpRxSw1JS3eJOJ9SRiqjiQD0G+Kvt7yb5C/Jbzp5
S07zFa+TtKih1KAF4RaxI0Ui1jljPACjRyIykjuK4qv1b8t9F8m+RdeXypdXmkEme+s7a2uBHH9a
kRVihCvHKhV3RUAZGJrTwoq8Z8x/84W+YYIpbzy75kjubqBUezs7iIwNzHxOFnRiqfHyKfAB4064
qxHz7+bXmiDy83kTzn5OtbLWpeK67qc6GKe89H/eW4LxLUsjEszqzh+1ASCqkOhflvNL+Xtz53/T
LaNciR7awAjRLG9ETrG0ZnhmDw8m7zQqlaVbeoVReoebvNWk2EDeYtLsLvUpLSGzFp5is1M72PCT
jJp8npW8UcIEZQ/Fz5EULV+FV635T8reRILXy1oGjecoLHzGDBLqkdpfUtL1JXImtDHalImmijDl
ZCeYfgrM/IEKvVZ/y8j0KBZ4Ne1q9Rbq2FnZXVzLdoHM6COP0vUgR41NCzOeYALF++KvRFNRQkFh
s1PGlem+KrDcW4uFtjKguGQyLDyHMopCswXrxBYAn3xV5L+YWt/lz53ij0oX9/Hr2lStc2K22k3N
xd29wlDHL9WltjKUNBSlEcdSRirC7788PzZ8uXF5o+s6FcXFs1utzYa7LFbaZeJbiQRvLJau9zbu
eRokfwN7eCrCvzB8u/ltrttDrj+YbPSNeneC2ls4LJ9KvFu5pQJ7q500PNMESJS9U5GRmpyUUOKs
o8gfm/8Ak3F5CtPKPmqa00e7s7hbDUI7fTrjhfW1q/OOeT9x+7E7byBvjryNF5VVVPPzD/5yM8r3
vly60nyF+kL5PT9C71XS7W5iNhDQD1oCVg+KIbhSyKaU5UxVifmj8wPyUufKVz5hu/MV55v82XFq
ukWZ1CCJbqxjnqJJre1EUECyRoS3qVargDmK4q8o0P8AM7RP09Jf+YfKttrukWaX0mn6aI0tYVut
TnWQy3BpKOC7rGprxFKH4a4q92/Ki+/Kvyn5Oe9H6JuvN09yLi71P6q6WcP1ydErb3DRfDa2qSUK
qwFUbcVrir1jWfzi/Kvy/pxv7zzBYD1w8oitnWSeZ0WjUiQl+R4cat7CuKvNv+cf9S8ta+uvaj5k
U6j5v83XU0l/ZzWc83o6cpWOC2lb0miSIChoW40KV7Yqw/8AM7zH+d2q/mNf6ZpGnJaWWgU0ueSw
Se7S2tdTjtrlpJLiGGKRUX0I5QURXTjTem6r0vyj5W8j/l55Fu/PWua2dc1XVrdJNQ84S/v5nS4C
oi23qFn9NQQeP2mpuNgoVfNP5feTb/RtYt73XdHMuiazc2+iT2l1bxy3cUOroJbO6ijnpFzcIRHJ
vxZTUVABVfVc3/ON/wCU0dzaXVhosFnLbXcd04dfrEc3F+RgdJzIojatKKB27bYq+Xfzm0O582+b
fMHmHyX5diby1obG2v8AUtJjl+ryPGx/eMrrGOapxEnpJxFOVSCGKryGKaWF+cTlHoV5LsaMCp+8
HFUZeXOkyafZRWtk9vewqwvbppvUWclqqwj4L6fEbUBOKoJSAakV2I2NOopiqK1W9tLy79a0sY9O
i9ONTbwvNIvNECvJyneV6yMCxFaCtBtiqbeR/N3m3yxrJufK141lqV5G1n6ihGJWWgP94GUeIbt1
xV6N5j/KjzTL5Z1/zt511a61DUluvqVrFFVzdyxWnqrdGafhW3iiUjZK8VahAFcVVv8AnGa//LXR
dfvdf85SRWV3pdubvRpronhKyqwk9FWHFpUpVAKsWPw9N1XoX/OO35o6xcebda0OWGHRrLVbufzC
lvqErJHFaTH1JltI/SQszfaBMyoq8m4tQ1VfQM02gedLO+sbS6Mi6PqkEc9xEB+7vtNmgvOKk7Nw
dVVu1ar44qyPFUk85eTPLvnHQLjQdftRdafcUNKlXjkX7EkbjdXXsfoNQSMVfNt7+SGrflt5gu7m
Dzdd6B5Y1e2FhH5i0+2DywytInCK+iQqyepsqzQlasPi413VW+cP+cSfMMHl24v9M1KyudY06M3U
aW9rci6vpUFW9Sae6uAJGoWAVApbbbFWA6FoHmjVfMEvmeO7vbjUvLENu8xAt7XVk4QtKkzxyC4i
uRwAKzPJV1HTwVZ7afmTrPmqx0WDT/zHutS1wSLd/wCHhpH1a8kdlZBCl3bwT24kjAPF5IjGGZWZ
tgQq9D0XQrDyQZ9O83atryXmoXMZs/MUN3qTW9003wAzqs1zBDcp0l5jgVUMuwIVVm+ieRvKMrXm
o6LqmoyXN0BBcamupXVzIQiU4rJO8woK8ttgelMVZWyaRpcd3fMtvYxOTPfXRCQqSooZJn+EGij7
THFWLX3mX8o2MuuTX+kX859MG4jeC8nbieEUcSoZZGPKvFEH2q0FScVYxrvnbzTq3m2LQ/JegRWO
p3kcf1rzJqUXC6trEluU5s2QSKF3ES3DJzc7Iyh2VVjXnzzKn5KRNbaTbW1zca2s9/d65rQuJ7nU
r0ECW3P1WNV5uHUpUpGtGBAJBKrG9f8AzY/MjXYNO0jSvLuk6ydY0+O7bRrGynv47L68ii2NzdLN
aLbySB5GZv8AdY47mpIVa8s/84h6trco1z8wNbf6/fW0j3FhAOcsNy4pF6lwzOJOA+JwOrbciNyq
ze+/5xP/ACWazk0+3t57fU3gY285vJDKCoA9UxsSpAYjl8FN+2Kvm3zv+WekWXnOSx8maxYXUFva
fWb+QXSzWdpJzELQveSKkW/Iby8R+zUt8OKoj8rE1m0u739Hfl9bee10u8WVtWtluiBJbuXUJIv7
plY0YJ6XxDsdqKsv1L/nI6b1tRudWt9d8t+cowBAIHhltnENy9zDa3NvOlrLHEvqFCVYsV+1yHw4
ql2i/wDOTfmbTpvM/mSmmz33mG7AfSZRd/WIoYbYQ2zxuoW1EcdQGH25DyJ47EqsF81efPLmuazp
F9bWVxp1pDJFLrGnKtvJBJNEqA3EUfGOMmQ+oTE6cASabOyhVPtF/NK21b8yU8y+YtY9CO11BtWh
nu7L1FkNusUdlbmK15stFQ71Ij+2tWqGVZh58/P5fzB06DRRNbaZojRWsGuX9+kTtHcNKEa8061R
xcOVR2b42IVQNkcVZVmGr+aLzyP5Z8seXvyw8xaBF5Zuru2sJ9Yqbu/We4USzXU0RrCq8SzsG3AA
UEbAKvlnzddz3nmTULi5lMt00pFzKYY7blMvwyH0olREqwJpxHvvviqp5TtfLT+YYLXzX9dg0p1d
ZmsfTW5SQxkwlVmHA1k4ghqbHqMVQ3mTSodK1y8sIHlkt4JGWGSeMQylO3OMM4VuzAMRXviqWYqy
nyL5RsNd1610/WtUfy9bX0Dy2GoPazXKysjmMKiRULAsjryrQFSOu2Ks88u+fr25806B5G886mnm
Tyto92IbMq7JBJIxRYBNLOsTfV0PwN6kZIjZ1pSlFXtfk/8AJf8ALP8AxrNeaxCl/baqbgeXdEas
9ikbGSeeWFjFbtJEglAicrwUt8LsxHFV4z+Zfk1tC8/3ln5Ttr/UNJFwug6TNdRrc2ccksMn1nTo
5rpQnqrLJxiVW5D4hUtir6C/5x78zeTbDyjo3lSyug/mVfVj1mxmkdbmGS2VvUeSGciREVuMQUKN
+goCcVek6d568sapf21lpV4uoS3KtIWtwXSJUXkfWf7KNuBwPxV7bGiqf4qgtc0ex1vRr7R79Odl
qEEltcKKV4SqUanIEVodtsVecr5o8x+QL7TtG823U+qaPPMtnouuKkPO5eaUKsWoyu0awyQQsW5B
QsoQnly/dlVlHmb8vNF1y6Gt2M0mjeZljC2vmHT24T0FCqzKD6dzFt/dyhhTpTrirwix/IfVtC/M
X1tR0ifWoY4ludH1TTbuWwhimSYiTjHGjtbPWZZQnqdVZg78mQKvQLF/zGs/MrWvmrWPqOjXPpR6
Gmo21rfwSyqFlUXd1CbRFkjlqsahUd/hPNyuyr2FA4RQ5Beg5ECgJ70BJp9+KoC/0DSdQv7S9vrZ
Lmax5fVRKoZUZypLhSPtjgKHt2xV5/561zzBqGp2Nj5M8tKfNN4hNp5l1aCKKGztYXBldlcSXi1Z
uKK0KglqjlQjFUr/AMd+X/JXlea4vdF1zRn1O4mGsa3cxxG7aUQn/TfUnaRZCxVRHHx+EdIwq0xV
5FoGiX352+ZILjy9I+kadok4l1HXr+aa51lxKG9CUB2aBOZiZFWAhVZGYhRwTFXrVr5G1b8mtI/S
3l7VrrV/Kdg5k1rQbmG1Ev1Qlmluop4o4XeaHlyo321BX+WirvPf/OSP5RQ+X1+qa3cX1zdpygXS
VmM0NaqJJgJbPiFJ3RpVY+GKvF/OvmTSfNFtHa+W4fNHni5i+sehrcsfoxRIF4+kpWJ5JolaXlJ9
Z5UQ8duZYKs0/Lb/AJxPupZ7XVPzLu31EyRtJLo0czcY5FEaQpNMp5SUjDDjGQq8QAxGKvovQfL2
h+X9Mj0vRLGHTtPhJMdtboEQFjVjQdST1OKvO/zm/Mn8v9EtZNF1Cys/MHma5hkGmaNcQJdR+qRS
P6xz2RCxFVrzbooJIxV4f5A/5xs1rzppv6U1/TrPSINXnW/i1S0mMUsNu5+O1i02NPQQ7bcmHCvR
qccVRPmn8nfyh07zZa+XfL0c99daOjXPmi+v7oJY20SoqKbmSsNSskySSRw/EdkHHlVVWAfmn5Y/
JrT7u7t/K+tE/o/T4Zra5jYXq6pezzEOg9GkVqIkBJ5cfZTsWVeViNpfVaOIkIObenUqiVoSa1NK
kbk4q9O/KL8gNb/MeTUTBqdvp1rp8Vu5uCPrAkkuU9RYx6bABkX+8qaqdqYqlv5uflHrn5W69ZWl
zqMN79aj+tWV3a+pG6+m4WrK32GDdOLHFWD6hqmpalfy6jqF1Ld387epPdzOzyu/8zOxLE4q97/M
jVNJ/ML/AJx/0rzLounWmmXflS9S113T7VUT01mjWFJlCqpCSOI6A+4qeOKvnrFX1d/zj55Wk87/
AJR2wtXi0nzD5T1dzoOv8Unkj50nkjeL4W9Mi4b4S1Cd+2Ksi/On8lPzG86wXd5cSaXqU1jYiLSV
tjcWU7yRSerzkR/rSSOyF40Uyqo5k9dwq8o/Jjyx+X3nWKz8rzX+oaH52QT/AFxjJyiuhBIJI4/R
kFGVIlIMXIGvJugxV9Bfm3o1n5e/JXVtNiWa+uERZdO9G2VVhuoSsyyRpapHFbRxtEZK7Ab7kmhV
SW6/Jvyz+ZX5YQa7PL9Y8369p1tcnzHdtzZHLpcNGsUREEK7GE+mgIXrU1qqyqw8qee/JeizQ+TL
uLXbAxs9lous3MrfVG4DhHaXoRnkhWlFjlA9nXfFUL+UXmbzLF5Il1rzhNF9VlguNYN0bkzXAAYy
XafVlgh9FIGPH0wX4H4atUUVeiaPr+i6zaR3elXsF7BKvJXgkSToaEHiTQq2xHY7Yqu1TR9P1RYE
vohPFby+ukbbqXCMg5A9aCQn54qk+mflt5H0rXP05pekxWOo1Yl7ZpIoyXT02JgRlhJ47CqbdsVZ
Liq2SOOWNo5FDxuCrowBVlIoQQeoOKtQQQW8KQQRrFDEoSOJAFVVUUCqo2AGKrzWm3XtiqSafpv6
HGpa1qtwt5fzrzurqC3ZONtbhjFDHChmkKx8nanJmLM3iAFWKaj+dn5Yy+VrvWLma4m0SOkU88um
X0ltzchQjsYPTrycAqWxV4p5X8pflnp9xfa9o35rQaJHqTJNb6boAmt7iMcSY4vqslxczSgczyja
EsDsCu4xVEa9P+d76DrAs/Md++g3Mdtotn/iOwSyutQm1Kf0QtnCEMgoknxSSHlT9kU2VZB5W/5w
/wBHN/FqnnjVpNZuBGiz2Ns00cUjIoFZbiSR55P9h6fy7Yq980bRdJ0TTLfS9ItIrHTrVeFvawqE
RRWpoB4k1J7nFUbirsVYPF+Xmmax55h8965bMdV00yW+h2ziMLBAoMYlk4DlI7sXkTmx4BhQBgcV
Tvztp2o3/l24h0xrldSWklibWf6ufXX+7Mjc4+UStRnSvxAUoemKvPvKvliD8uptR88ed9dhtBJb
yW0iu7N6rSz+u91O7E+pdzcVX04EVVVQihqAhV86/mh5p8yfmJ5hHnax0f0fLFpe2sGi6beIvq6j
cEovD0lJa5dlSjLGWCLQdySq928s/wDOLP5c3HkDR7DzDpD23mEQxzalfW87icXLIPUTmC0ZUEUp
xIHbffFUP/zjXb+X/Knlrzm8c14ul2Wq3j/WbqF1h+qWZZFeOfgsbvwWkiqahh0xVOPy1sZdfubv
83vO7Q2i6xZiy0TTpyot7TSHlDxmT1PhMtw9HrX9rb7VAq355/I78q/Pnl3UZNF0m30/XYoz9Vu7
KH6nIl08CTxJPFSJW5LKnIOtQD1U4q+HvrWu6HJqmk+rNZPOGstWtAeIf0pQxilXoeMkY+kYqluK
vqf8rU89flh+VGkeeNKlttT8t6tMk2v6FcgRyRGec2sdxBdqPhHERclcELufGir3zyn551G/1q90
DzNp8Wga9AQ9lYC4Fwt3b05Ge2lKxGVV+y1EBUjenQKvLv8AnIXyN+Wrxxa1ayL5a83LeiC28wWi
tb266gypcRrqEsKNwaQShlmahHVn4jFWE6X+cX5pecfILXXmTQm1DyXZ3K2WuajohMN9zhWOQPOj
+u3FSwlcwqnxcfiVaqyqeeXrz/nHTS9cupF1u3PlyO1g1HTIZLieRaN68c9hNZygxOFJ9SNPTMqs
zNXcYq9F8t+eV0fys9z5c/L7zD/hqAG4hDNCZWjf4uVva3V0bjgRRuKqNySB1OKpT+WPkDyp5w8j
fXLzWZdYiuRPBbJb3TkaeHn+sPG9FiWa6aXjLPJNF+8bqpX7Sr0TT9GvrLU7RL/S7PVVX+61y3gg
t54GRAoM0Tt+0opzhPt6ajfFWU4q7FXYq7FXYq7FXYqxv/lX3lxtW/SFws12qzyXkNhcyvNaRXUr
cnnSF6rz5brWoTfhxxV2t+afJ/lqcQSNH+l5Y2e30qyhM9/MgqapbW6vMUqu7ceI7kYqxbQVv/OP
5mReZr7RrzT9F8vacbfSIdWtjbTjULyQG5kjjbny4QwonqA0+IgV64q9NxV2KuxV2KqFzfWltNaw
zycJb2UwWq0J5yLE8xXYbfu4XbfwxV5n+Y3/ADkBoflLU7rQ9M0m98zeYbSITXFjp68ooVIr/pEy
iQx7bn4DTvir501n8zH/ADB85WHmPzHYrqTRD6v5a8g24kuUMrMPTlu+TQJxldtytWYBapwAqq+m
fIv5faqnma886+bUtxrU8Mdpo2kQN69tpNmiisNvIUjHNz9tlQeAqDUqs41fSo9Utlt5Li4t41kW
RzbSmFnC1rGzLvwYGjDFXj/mXS4dfiT8kPJcUUGhadbQjzXrDoswtYS/NbeJWBVrydl9Qsfs/a+1
0VZn59/KXR/Nnl6w0QahfaRZ6XGIrWLTpBGjIvp8VlQg+oFEI4iood+tKKsOv/y+0jUtVg0e80mw
Ou+abf8ASGoPNaW9wdHs7dEik9D6wJfUnd5kiWQqfi5ORxVUCr5d/PG08lWfnK8sPKdo8el6X6Fh
DeJK08VxJFGXuJGkcyF5Ocqr8LABV6biirzjFX2//wA426N5f8z/AJHQWeoQSTRTx3ekalAZ5jC8
frO6lYuZSNgko+JQGrv3xVWt/wAsbK6/Mf8AQGp+avMZstJtUutE02a7kiWeBx6d16d5D6czpGXi
Rk5hl71VhRVX80f84teS9Zv4prbUL6ytJpOWr20sr37XKBldRHNdtLJBICnH1FJbiSvQnFVn5DWF
z+X93rPkTzDaPpt5qmrXWp+X52kM9teW7RRoY4bmg5yxLByZXCuVPLj1xVlHmP8AIvyLq2o/pnTU
uPLPmEVI1jQpTZTEk1PNUBifkftckqfHFUPoy/n1okctpex6P5qtLRytvfyXMun39zDtxLRrBLbq
6jrVhU9++KsE83XWgw6/Hq+maheflf5w+tA6tbXyn6rfAxenHJHErS2V3xcD+6IcqX/apiqIsPzK
8sXkmkS+ZPMd9b60Lhl1aS2nvYtNliQOFNq9ops/Sjl4OfUKycQyyfFVMVek/l/+aOkedtQ1qHTI
ZRZ6bMI7S8eKZEuIqBWlVnRY6eqrqoDliBUgYqzXFXYq7FXYq7FXYqkV/Y+c7jUJvqurWdlpnEfV
1Fk8tyGIoecjziOgO4pHv9G6qp5c8sWmixSyGV7/AFW7IfUdWuApuLhwKDkVCqqKNkjUBVHQdcVT
nFXYq7FXYq7FXh/5vaxqfnLzjoX5d+Xje2cEWoq+ueY7UvB6JFs5ltLaaqq0ptZXaXfYEChrxxV6
d5U8j+W/JOgPpnljTVhiAaVo+VZbiWhNZZpCWZmO1WO3yxV5Bpf5BeZdJ886P51tWsrJINUN5L5X
sI/UhtlvWSC5K3crRO4W3UMVCcQw+BQMVfQOKsK83fmX5Y0O31VNci1Oy0yxAhuNXitrgQGWRAwS
GaL4+XxBQ9AnL4eVajFUL+RXlm68v/lnpVvqFmbTWbr1bzVfUFJ5J55Wf1LgkszSenxB5MTtTtiq
G1L86LLTTq1xcaXOdM0wgSXEkkFlIrekshjaG+ktSz0ZWHp8tnWtGqMVeF+avzA/MfXtX1bzjJpV
5oWi6JbSRXFzbOltqKWFy8jWMDxzmRYzcTRxtNRWbjRgOJjBVYH+fUOg6NpvkXylo0cfp6boyahf
XCp6Ukt3qXEyNNGyrIrlbdGo+/FlHbFXkeKvtj/nC6Z5Pyp1BGpSHWrhEp4G2tn3+ljir1zWvKC6
nr9jra6ndWN1YW81rGtuLdgY7h43k3nhmZC3oqCUINBirIMVYd+ZNpO8fl3UgjPZaLrVvqGpFQCU
tlhmhaXffjE8yu9P2AcVZjirsVS3zF5e0nzDpE+lapD61rOOo+GSNx9iWJxukiH4kdd1O4xV5j5m
/J7VdQsNPnkSzv8AV1f6vrroEhXUIlakF9IskbxfWkoDKrKVkUulfscVXoPk/TvMml2Cabqz2c8F
rDFHbXNqbgSOwX956q3DTN9ro3qkt1IHTFU/xV2KuxV2KuxV2KuxV2KuxV2KuxV2KpX5kutdt9Lf
9BWaXmqzMIrYTMEgiLf7unNVYxx9SqVZug61CqzRfLOnaZa2Ssi3V9aCVjqMiIJnnum53U2w+Bp5
PiYLt26Yqm+KuxV2KsOuPIQ1nztJ5g8yOL6y0xoh5Z0piWtoGEatLeSxkcWuDKzKhNeCqCPiOyrM
cVYP53/Kryx5g0LWYP0dFPqmow3DJPO7nlcyrWF5WrVlhYL6YNQiiigAYqwzzpPqn5keZ7r8stNt
p9C8ufVRdeZ9RuLRoZ5VjuBHHFaiVOLc/QQpKCV4V68aYq+OPzD8s6h5X866v5f1C4N3c6dcGI3R
JJkSgaJzWp+KMqadumKsdxV9l/8AOEzN/wAq/wBcWp4jViQvYE20NT+GKvonFXYq0yqylWAZWFGU
7gg9jireKuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KtcV5FqD
kQAW7kCtB+OKvg//AJy0spLf869TlaPgt5bWcyNSnMCBYeXvvEV+jFXjmKvsD/nCG65eVPMtpyr6
V/DLwpuPVh41r7+lir6UxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2Kux
V2KuxV2KuxV2KuxV8if85wW1svmLyvcqB9aks7mOVtuRjjlVowfasj0xV8zYq+uf+cHoJBofmucj
929zaIp/ykjkJ/4mMVfTeKuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2
KuxV2KuxV2KuxV2KvjD/AJzV1MT/AJjaRp6kFbLSkd6dRJPPKSp/2KKfpxV89Yq+zf8AnCae2b8u
tagWn1qPV3eXpX03tYBH+KPir6HxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2K
uxV2KuxV2KuxV2KuxVTmubeBBJNKkSE0DuwUEnelTiqUa3548naHaNd6vrdlY26ivKaeNSfZVryY
+yiuKvgz8/8Az1pfnb8z9R1rR5zc6P6VtBYTGN4mKRwrzqrhW/vmfqMVec4q9i/5xn/Nuz8gecJ7
fWJTF5d1tFhvZqFhDNGSYZiBU8RyZWp2Ne2KvuXT9c0TUgG07ULa9BAYG3mjlBBFQfgLdsVRuKux
V2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxVLde0QaxZi1N9eaeOXIzWExt5S
P5eYBIHyxVhj/kyOUjQeePN0Bdue2rGULvWiieOUAe2KoYflF5vt3nNh+ZnmBFmJJF19VuyPiYji
XiXj9r9kD8BRVg+o/wDOL/nA391rdn+Yl1Nr9yGWS4vLUMrK44sP7x+Hw7AquKsRvv8AnEL8z9Rj
gtdR85wXdlbgehHO93KsZ40okb1VadNj0xViuqf84cfmtZRSyw3Ol30cas4WCaf1GC70CPAtWI7C
uKsLT/nH785nYKPKd6CSAOQRRuadSwGKqt9/zjp+dVlaLdz+VblomUsBDJBPIABy3ihkeQH2K4qx
f/lX/nzlx/w3qvKleP1K4rTx+xiqeab+SH5xXd7bwWvlPVIp5vjhkmga2RSo5Veab044z4c2GKst
svJn/OT/AJdKrbya/YkqZRb28t5dRkKCByW1+sRVJWgVt+9KGuKvUNMsf+c2raNK3dtPGBQRXJ0x
moankWCB+1N27/cqz3y9b/8AOUzxrJqt35YiK0PoSx3Du4NSys0BVVp0qtf6qvQvKx88+lMPNY0z
1QV+rtpRuOJFPi5rOKjfpQ4qnuKuxV2KuxV2KuxV2Kv/2Q==</xmpGImg:image>
</rdf:li>
</rdf:Alt>
</xmp:Thumbnails>
</rdf:Description>
<rdf:Description rdf:about=""
xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/"
xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#"
xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#">
<xmpMM:RenditionClass>proof:pdf</xmpMM:RenditionClass>
<xmpMM:OriginalDocumentID>uuid:65E6390686CF11DBA6E2D887CEACB407</xmpMM:OriginalDocumentID>
<xmpMM:DocumentID>xmp.did:3DE2707410206811822AE3428A142A88</xmpMM:DocumentID>
<xmpMM:InstanceID>uuid:820da86f-0216-2946-8168-cd811b42c6bc</xmpMM:InstanceID>
<xmpMM:DerivedFrom rdf:parseType="Resource">
<stRef:instanceID>uuid:0422f9ea-96fe-9946-a099-8d9eefc40c79</stRef:instanceID>
<stRef:documentID>xmp.did:66A6819719206811822A897E387FE54C</stRef:documentID>
<stRef:originalDocumentID>uuid:65E6390686CF11DBA6E2D887CEACB407</stRef:originalDocumentID>
<stRef:renditionClass>proof:pdf</stRef:renditionClass>
</xmpMM:DerivedFrom>
<xmpMM:History>
<rdf:Seq>
<rdf:li rdf:parseType="Resource">
<stEvt:action>saved</stEvt:action>
<stEvt:instanceID>xmp.iid:3DE2707410206811822AE3428A142A88</stEvt:instanceID>
<stEvt:when>2013-09-06T15:59:16-04:00</stEvt:when>
<stEvt:softwareAgent>Adobe Illustrator CS6 (Macintosh)</stEvt:softwareAgent>
<stEvt:changed>/</stEvt:changed>
</rdf:li>
</rdf:Seq>
</xmpMM:History>
</rdf:Description>
<rdf:Description rdf:about=""
xmlns:illustrator="http://ns.adobe.com/illustrator/1.0/">
<illustrator:StartupProfile>Web</illustrator:StartupProfile>
<illustrator:Type>Document</illustrator:Type>
</rdf:Description>
<rdf:Description rdf:about=""
xmlns:xmpTPg="http://ns.adobe.com/xap/1.0/t/pg/"
xmlns:stDim="http://ns.adobe.com/xap/1.0/sType/Dimensions#"
xmlns:xmpG="http://ns.adobe.com/xap/1.0/g/">
<xmpTPg:NPages>1</xmpTPg:NPages>
<xmpTPg:HasVisibleTransparency>False</xmpTPg:HasVisibleTransparency>
<xmpTPg:HasVisibleOverprint>False</xmpTPg:HasVisibleOverprint>
<xmpTPg:MaxPageSize rdf:parseType="Resource">
<stDim:w>145.000000</stDim:w>
<stDim:h>70.000000</stDim:h>
<stDim:unit>Pixels</stDim:unit>
</xmpTPg:MaxPageSize>
<xmpTPg:PlateNames>
<rdf:Seq>
<rdf:li>Cyan</rdf:li>
<rdf:li>Magenta</rdf:li>
<rdf:li>Yellow</rdf:li>
<rdf:li>Black</rdf:li>
</rdf:Seq>
</xmpTPg:PlateNames>
<xmpTPg:SwatchGroups>
<rdf:Seq>
<rdf:li rdf:parseType="Resource">
<xmpG:groupName>Default Swatch Group</xmpG:groupName>
<xmpG:groupType>0</xmpG:groupType>
<xmpG:Colorants>
<rdf:Seq>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>White</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>255</xmpG:red>
<xmpG:green>255</xmpG:green>
<xmpG:blue>255</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>Black</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>0</xmpG:red>
<xmpG:green>0</xmpG:green>
<xmpG:blue>0</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>RGB Red</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>255</xmpG:red>
<xmpG:green>0</xmpG:green>
<xmpG:blue>0</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>RGB Yellow</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>255</xmpG:red>
<xmpG:green>255</xmpG:green>
<xmpG:blue>0</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>RGB Green</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>0</xmpG:red>
<xmpG:green>255</xmpG:green>
<xmpG:blue>0</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>RGB Cyan</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>0</xmpG:red>
<xmpG:green>255</xmpG:green>
<xmpG:blue>255</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>RGB Blue</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>0</xmpG:red>
<xmpG:green>0</xmpG:green>
<xmpG:blue>255</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>RGB Magenta</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>255</xmpG:red>
<xmpG:green>0</xmpG:green>
<xmpG:blue>255</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=193 G=39 B=45</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>193</xmpG:red>
<xmpG:green>39</xmpG:green>
<xmpG:blue>45</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=237 G=28 B=36</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>237</xmpG:red>
<xmpG:green>28</xmpG:green>
<xmpG:blue>36</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=241 G=90 B=36</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>241</xmpG:red>
<xmpG:green>90</xmpG:green>
<xmpG:blue>36</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=247 G=147 B=30</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>247</xmpG:red>
<xmpG:green>147</xmpG:green>
<xmpG:blue>30</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=251 G=176 B=59</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>251</xmpG:red>
<xmpG:green>176</xmpG:green>
<xmpG:blue>59</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=252 G=238 B=33</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>252</xmpG:red>
<xmpG:green>238</xmpG:green>
<xmpG:blue>33</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=217 G=224 B=33</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>217</xmpG:red>
<xmpG:green>224</xmpG:green>
<xmpG:blue>33</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=140 G=198 B=63</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>140</xmpG:red>
<xmpG:green>198</xmpG:green>
<xmpG:blue>63</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=57 G=181 B=74</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>57</xmpG:red>
<xmpG:green>181</xmpG:green>
<xmpG:blue>74</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=0 G=146 B=69</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>0</xmpG:red>
<xmpG:green>146</xmpG:green>
<xmpG:blue>69</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=0 G=104 B=55</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>0</xmpG:red>
<xmpG:green>104</xmpG:green>
<xmpG:blue>55</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=34 G=181 B=115</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>34</xmpG:red>
<xmpG:green>181</xmpG:green>
<xmpG:blue>115</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=0 G=169 B=157</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>0</xmpG:red>
<xmpG:green>169</xmpG:green>
<xmpG:blue>157</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=41 G=171 B=226</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>41</xmpG:red>
<xmpG:green>171</xmpG:green>
<xmpG:blue>226</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=0 G=113 B=188</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>0</xmpG:red>
<xmpG:green>113</xmpG:green>
<xmpG:blue>188</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=46 G=49 B=146</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>46</xmpG:red>
<xmpG:green>49</xmpG:green>
<xmpG:blue>146</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=27 G=20 B=100</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>27</xmpG:red>
<xmpG:green>20</xmpG:green>
<xmpG:blue>100</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=102 G=45 B=145</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>102</xmpG:red>
<xmpG:green>45</xmpG:green>
<xmpG:blue>145</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=147 G=39 B=143</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>147</xmpG:red>
<xmpG:green>39</xmpG:green>
<xmpG:blue>143</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=158 G=0 B=93</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>158</xmpG:red>
<xmpG:green>0</xmpG:green>
<xmpG:blue>93</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=212 G=20 B=90</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>212</xmpG:red>
<xmpG:green>20</xmpG:green>
<xmpG:blue>90</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=237 G=30 B=121</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>237</xmpG:red>
<xmpG:green>30</xmpG:green>
<xmpG:blue>121</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=199 G=178 B=153</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>199</xmpG:red>
<xmpG:green>178</xmpG:green>
<xmpG:blue>153</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=153 G=134 B=117</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>153</xmpG:red>
<xmpG:green>134</xmpG:green>
<xmpG:blue>117</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=115 G=99 B=87</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>115</xmpG:red>
<xmpG:green>99</xmpG:green>
<xmpG:blue>87</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=83 G=71 B=65</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>83</xmpG:red>
<xmpG:green>71</xmpG:green>
<xmpG:blue>65</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=198 G=156 B=109</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>198</xmpG:red>
<xmpG:green>156</xmpG:green>
<xmpG:blue>109</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=166 G=124 B=82</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>166</xmpG:red>
<xmpG:green>124</xmpG:green>
<xmpG:blue>82</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=140 G=98 B=57</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>140</xmpG:red>
<xmpG:green>98</xmpG:green>
<xmpG:blue>57</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=117 G=76 B=36</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>117</xmpG:red>
<xmpG:green>76</xmpG:green>
<xmpG:blue>36</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=96 G=56 B=19</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>96</xmpG:red>
<xmpG:green>56</xmpG:green>
<xmpG:blue>19</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=66 G=33 B=11</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>66</xmpG:red>
<xmpG:green>33</xmpG:green>
<xmpG:blue>11</xmpG:blue>
</rdf:li>
</rdf:Seq>
</xmpG:Colorants>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:groupName>Grays</xmpG:groupName>
<xmpG:groupType>1</xmpG:groupType>
<xmpG:Colorants>
<rdf:Seq>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=0 G=0 B=0</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>0</xmpG:red>
<xmpG:green>0</xmpG:green>
<xmpG:blue>0</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=26 G=26 B=26</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>26</xmpG:red>
<xmpG:green>26</xmpG:green>
<xmpG:blue>26</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=51 G=51 B=51</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>51</xmpG:red>
<xmpG:green>51</xmpG:green>
<xmpG:blue>51</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=77 G=77 B=77</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>77</xmpG:red>
<xmpG:green>77</xmpG:green>
<xmpG:blue>77</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=102 G=102 B=102</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>102</xmpG:red>
<xmpG:green>102</xmpG:green>
<xmpG:blue>102</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=128 G=128 B=128</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>128</xmpG:red>
<xmpG:green>128</xmpG:green>
<xmpG:blue>128</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=153 G=153 B=153</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>153</xmpG:red>
<xmpG:green>153</xmpG:green>
<xmpG:blue>153</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=179 G=179 B=179</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>179</xmpG:red>
<xmpG:green>179</xmpG:green>
<xmpG:blue>179</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=204 G=204 B=204</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>204</xmpG:red>
<xmpG:green>204</xmpG:green>
<xmpG:blue>204</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=230 G=230 B=230</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>230</xmpG:red>
<xmpG:green>230</xmpG:green>
<xmpG:blue>230</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=242 G=242 B=242</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>242</xmpG:red>
<xmpG:green>242</xmpG:green>
<xmpG:blue>242</xmpG:blue>
</rdf:li>
</rdf:Seq>
</xmpG:Colorants>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:groupName>Web Color Group</xmpG:groupName>
<xmpG:groupType>1</xmpG:groupType>
<xmpG:Colorants>
<rdf:Seq>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=63 G=169 B=245</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>63</xmpG:red>
<xmpG:green>169</xmpG:green>
<xmpG:blue>245</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=122 G=201 B=67</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>122</xmpG:red>
<xmpG:green>201</xmpG:green>
<xmpG:blue>67</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=255 G=147 B=30</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>255</xmpG:red>
<xmpG:green>147</xmpG:green>
<xmpG:blue>30</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=255 G=29 B=37</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>255</xmpG:red>
<xmpG:green>29</xmpG:green>
<xmpG:blue>37</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=255 G=123 B=172</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>255</xmpG:red>
<xmpG:green>123</xmpG:green>
<xmpG:blue>172</xmpG:blue>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<xmpG:swatchName>R=189 G=204 B=212</xmpG:swatchName>
<xmpG:mode>RGB</xmpG:mode>
<xmpG:type>PROCESS</xmpG:type>
<xmpG:red>189</xmpG:red>
<xmpG:green>204</xmpG:green>
<xmpG:blue>212</xmpG:blue>
</rdf:li>
</rdf:Seq>
</xmpG:Colorants>
</rdf:li>
</rdf:Seq>
</xmpTPg:SwatchGroups>
</rdf:Description>
<rdf:Description rdf:about=""
xmlns:pdf="http://ns.adobe.com/pdf/1.3/">
<pdf:Producer>Adobe PDF library 10.01</pdf:Producer>
</rdf:Description>
</rdf:RDF>
</x:xmpmeta>
<?xpacket end="w"?>
endstream
endobj
3 0 obj
<</Count 1/Kids[7 0 R]/Type/Pages>>
endobj
7 0 obj
<</ArtBox[0.0 0.0 85.8818 61.5005]/BleedBox[0.0 0.0 145.0 70.0]/Contents 8 0 R/LastModified(D:20130906155919-04'00')/MediaBox[0.0 0.0 145.0 70.0]/Parent 3 0 R/PieceInfo<</Illustrator 9 0 R>>/Resources<</ColorSpace<</CS0 10 0 R>>/ExtGState<</GS0 11 0 R>>/Properties<</MC0 5 0 R>>>>/Thumb 12 0 R/TrimBox[0.0 0.0 145.0 70.0]/Type/Page>>
endobj
8 0 obj
<</Filter/FlateDecode/Length 184604>>stream
HLW;c{@kX$,d?Wj4~_G{O|zG~~?G?ϊ?>b?51vÏ<D[CaL}o
|